MoS2/PEDOT:PSS nanocomposite films for deep UV sensing: role of the radiation-induced trapping and localization of charges

[1]  B. Karthikeyan,et al.  Flexible ultraviolet photodetector based on flower-like ZnO/PEDOT:PSS nanocomposites , 2022, Applied Physics A.

[2]  N. Alwadai,et al.  Enhanced solar-blind deep UV photodetectors based on solution-processed p-MnO quantum dots and n-GaN p–n junction-structure , 2022, Applied Physics Letters.

[3]  Jun Pan,et al.  Oriented Halide Perovskite Nanostructures and Thin Films for Optoelectronics. , 2021, Chemical reviews.

[4]  Kaikai Xu Silicon electro-optic micro-modulator fabricated in standard CMOS technology as components for all silicon monolithic integrated optoelectronic systems , 2021, Journal of Micromechanics and Microengineering.

[5]  Tae Yoon Lee,et al.  Label-Free Electrochemical Biosensor Based on Au@MoS₂–PANI for Escherichia coli Detection , 2021, Chemosensors.

[6]  Po-Da Hong,et al.  Effect of PMMA on the surface of exfoliated MoS2 nanosheets and their highly enhanced ammonia gas sensing properties at room temperature , 2020 .

[7]  M. Mahdavi,et al.  Preparation of Few-Layered Wide Bandgap MoS2 with Nanometer Lateral Dimensions by Applying Laser Irradiation , 2020, Crystals.

[8]  Dong Ha Kim,et al.  Solution-Processed PEDOT:PSS/MoS2 Nanocomposites as Efficient Hole-Transporting Layers for Organic Solar Cells , 2019, Nanomaterials.

[9]  V. Adam,et al.  Fabrication of Graphene/Molybdenum Disulfide Composites and Their Usage as Actuators for Electrochemical Sensors and Biosensors , 2019, Molecules.

[10]  H. Okuzaki,et al.  Fully soluble self-doped poly(3,4-ethylenedioxythiophene) with an electrical conductivity greater than 1000 S cm−1 , 2019, Science Advances.

[11]  Liming Chen,et al.  Flexible X-ray Detectors Based on Amorphous Ga2O3 Thin Films , 2019, ACS Photonics.

[12]  Yinghua Lu,et al.  Effects of single and combined UV-LEDs on inactivation and subsequent reactivation of E. coli in water disinfection. , 2018, Water research.

[13]  S. Yin,et al.  TiO2 Nanorod Arrays Based Self-Powered UV Photodetector: Heterojunction with NiO Nanoflakes and Enhanced UV Photoresponse. , 2018, ACS applied materials & interfaces.

[14]  A. K. Thakur,et al.  Enhanced electrochemical performance of polypyrrole coated MoS2 nanocomposites as electrode material for supercapacitor application , 2016 .

[15]  M. Cecchini,et al.  Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease , 2016, Scientific Reports.

[16]  Dongzhi Zhang,et al.  Facile Fabrication of MoS2-Modified SnO2 Hybrid Nanocomposite for Ultrasensitive Humidity Sensing. , 2016, ACS applied materials & interfaces.

[17]  X. Hou,et al.  Hydrothermal synthesis of MoS2 nanosheets films: Microstructure and formation mechanism research , 2016 .

[18]  Yuan Hu,et al.  In situ synthesis, morphology, and fundamental properties of polymer/MoS2 nanocomposites , 2015 .

[19]  James R Friend,et al.  Electrochemical control of photoluminescence in two-dimensional MoS(2) nanoflakes. , 2013, ACS nano.

[20]  Bin Liu,et al.  Sensing behavior of atomically thin-layered MoS2 transistors. , 2013, ACS nano.

[21]  P M Campbell,et al.  Chemical vapor sensing with monolayer MoS2. , 2013, Nano letters.

[22]  Lei Song,et al.  Preparation of poly(vinyl alcohol) nanocomposites with molybdenum disulfide (MoS2): structural characteristics and markedly enhanced properties , 2012 .

[23]  M. Valentine,et al.  Ring-shaped NdFeB-based magnetic tweezers enables oscillatory microrheology measurements , 2012 .

[24]  Can Ataca,et al.  Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure , 2012 .

[25]  Kinam Kim,et al.  Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays. , 2012, Nature materials.

[26]  Chunzhong Li,et al.  Demonstration of photoluminescence and metal-enhanced fluorescence of exfoliated MoS2. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[27]  C. N. Lau,et al.  Stacking-dependent band gap and quantum transport in trilayer graphene , 2011, 1103.6088.

[28]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[29]  Lelia Cosimbescu,et al.  Exfoliated MoS2 Nanocomposite as an Anode Material for Lithium Ion Batteries , 2010 .

[30]  A. Ferrari,et al.  Graphene Photonics and Optoelectroncs , 2010, CLEO 2012.

[31]  V. Gregoriou,et al.  Infrared spectroscopy as a tool to monitor the extent of intercalation and exfoliation in polymer clay nanocomposites , 2009 .

[32]  Bai Xu,et al.  Preparation and characterization of polythiophene/molybdenum disulfide intercalation material , 2009 .

[33]  Jean-Luc Brédas,et al.  Electronic evolution of poly(3,4-ethylenedioxythiophene) (PEDOT): from the isolated chain to the pristine and heavily doped crystals. , 2008, Journal of the American Chemical Society.

[34]  E. Benavente,et al.  Electrical conductivity of MoS2 based organic–inorganic nanocomposites , 2004 .

[35]  S. Jenekhe,et al.  Theoretical and experimental characterization of small band gap poly(3,4-ethylenedioxythiophene methine)s , 2004 .

[36]  Wei-min Liu,et al.  Structure characterization and conductive performance of polypyrrol‐molybdenum disulfide intercalation materials , 2004 .

[37]  Shiming Zhang,et al.  Solvent-induced changes in PEDOT:PSS films for organic electrochemical transistors , 2015 .

[38]  Xuehong Lu,et al.  Conductivities enhancement of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) transparent electrodes with diol additives , 2012, Polymer Bulletin.