Methodical Construction of Symbolic Diagrams

We introduce a stepwise approach for computing symbolic diagrams. Such logical diagrams display formulas and connections between them and they are useful tools for visualizing connections between formulas as well as for reasoning about them. This incremental approach is modular: it starts from small diagrams and expands them. We explain the method and justify it. We also comment on the application of these ideas and illustrate them with some examples.

[1]  Paulo A. S. Veloso,et al.  Logics For Qualitative Reasoning , 2004, Logic, Epistemology, and the Unity of Science.

[2]  Diego Calvanese,et al.  The description logic handbook: theory , 2003 .

[3]  W. van der Hoek,et al.  Epistemic logic for AI and computer science , 1995, Cambridge tracts in theoretical computer science.

[4]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[5]  Robert C. Moore Logic and Representation , 1994 .

[6]  Paulo A. S. Veloso,et al.  On Special Functions and Theorem Proving in Logics for 'Generally' , 2002, SBIA.

[7]  Alessandra Russo,et al.  Advances in Artificial Intelligence – SBIA 2004 , 2004, Lecture Notes in Computer Science.

[8]  Dirk van Dalen,et al.  Logic and structure , 1980 .

[9]  Jean-Yves Béziau,et al.  From Consequence Operator to Universal Logic: A Survey of General Abstract Logic , 2005 .

[10]  Jerzy Tiuryn,et al.  Logics of Programs , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[11]  Diego Calvanese,et al.  The Description Logic Handbook: Theory, Implementation, and Applications , 2003, Description Logic Handbook.

[12]  Alessandro Facchini,et al.  Aspects of Universal Logic , 2004 .

[13]  Mario R. F. Benevides,et al.  On Modalities for Vague Notions , 2004, SBIA.

[14]  Johan van Benthem,et al.  Handbook of Logic and Language , 1996 .

[15]  Ronald Fagin,et al.  Reasoning about knowledge , 1995 .

[16]  Maarten de Rijke,et al.  Resolution in Modal, Description and Hybrid Logic , 2001, J. Log. Comput..

[17]  Shahid Rahman,et al.  Logic, Epistemology, and the Unity of Science , 2004, Logic, Epistemology, and the Unity of Science.

[18]  Alessio Moretti,et al.  Geometry of Modalities ? Yes : Through n-Opposition Theory , 2004 .

[19]  Brian F. Chellas Modal Logic: Normal systems of modal logic , 1980 .

[20]  J. Van Leeuwen,et al.  Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .