The role of stomata in sensing and driving environmental change

[1]  R. Sexton,et al.  Stomata and plasmodesmata , 1979, Protoplasma.

[2]  G. Bredenkamp,et al.  On the origin of northern and southern hemisphere grasslands , 2002, Plant Ecology.

[3]  G. Jiang,et al.  Different Patterns of Gas Exchange and Photochemical Efficiency in Three Desert Shrub Species Under Two Natural Temperatures and Irradiances in Mu Us Sandy Area of China , 2001, Photosynthetica.

[4]  Rainer Hedrich,et al.  Characterization of the plasma-membrane H+-ATPase from Vicia faba guard cells , 1992, Planta.

[5]  M. Blatt,et al.  Membrane transport in stomatal guard cells: The importance of voltage control , 1992, The Journal of Membrane Biology.

[6]  J. Berry,et al.  A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species , 1980, Planta.

[7]  Alistair,et al.  Encoding specificity in Ca * + signalling systems , 2004 .

[8]  P. Jarvis,et al.  Stomatal physiology , 2004, Photosynthesis Research.

[9]  B. Mueller‐Roeber,et al.  Phospholipase C is required for the control of stomatal aperture by ABA. , 2003, The Plant journal : for cell and molecular biology.

[10]  S. Goodwin,et al.  Cloning and Characterization of the WAX2 Gene of Arabidopsis Involved in Cuticle Membrane and Wax Production , 2003 .

[11]  R. Dixon,et al.  A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis , 2002, Nature.

[12]  Effects of elevated CO2 (FACE) on the functional ecology of the drought-deciduous Mojave Desert shrub, Lycium andersonii , 2002 .

[13]  Denis Loustau,et al.  Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data , 2002 .

[14]  B. Medlyn,et al.  Temperature response of parameters of a biochemically based model of photosynthesis. I. Seasonal changes in mature maritime pine (Pinus pinaster Ait.) , 2002 .

[15]  T. Givnish,et al.  Historical biogeography and the origin of stomatal distributions in Banksia and Dryandra (Proteaceae) based on their cpDNA phylogeny. , 2002, American journal of botany.

[16]  Lawrence B. Flanagan,et al.  Seasonal and interannual variation in evapotranspiration, energy balance and surface conductance in a northern temperate grassland , 2002 .

[17]  J. Flexas,et al.  Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. , 2002, Annals of botany.

[18]  F. Woodward,et al.  Potential impacts of global elevated CO(2) concentrations on plants. , 2002, Current opinion in plant biology.

[19]  U. Lüttge,et al.  Midday depression in savanna trees: coordinated adjustments in photochemical efficiency, photorespiration, CO2 assimilation and water use efficiency , 2002, Oecologia.

[20]  F. Woodward,et al.  Stomatal development and CO2 : ecological consequences. , 2002, The New phytologist.

[21]  J. Raven Selection pressures on stomatal evolution. , 2002, The New phytologist.

[22]  L. D. Talbott,et al.  The CO(2) response of Vicia guard cells acclimates to growth environment. , 2002, Journal of experimental botany.

[23]  F. Woodward,et al.  Long‐distance CO2 signalling in plants , 2002 .

[24]  T. Tschaplinski,et al.  Plant water relations at elevated CO2 -- implications for water-limited environments. , 2002, Plant, cell & environment.

[25]  Joao Antonio Pereira,et al.  Linked: The new science of networks , 2002 .

[26]  F. Woodward,et al.  Long-distance CO(2) signalling in plants. , 2002, Journal of experimental botany.

[27]  J. Schroeder,et al.  GUARD CELL SIGNAL TRANSDUCTION. , 2003, Annual review of plant physiology and plant molecular biology.

[28]  D. Whitehead,et al.  Photosynthetic characteristics in canopies of Quercus rubra, Quercus prinus and Acer rubrum differ in response to soil water availability , 2002, Oecologia.

[29]  A. Hetherington,et al.  Guard Cell Signaling , 2001, Cell.

[30]  Ken-ichiro Shimazaki,et al.  phot1 and phot2 mediate blue light regulation of stomatal opening , 2001, Nature.

[31]  A. Knapp,et al.  C3 woody plant expansion in a C4 grassland: are grasses and shrubs functionally distinct? , 2001, American journal of botany.

[32]  A. Sõber,et al.  Leaf anatomical characteristics associated with shoot hydraulic conductance, stomatal conductance and stomatal sensitivity to changes of leaf water status in temperate deciduous trees , 2001 .

[33]  S. Barrett,et al.  ECOLOGICAL DIFFERENTIATION OF COMBINED AND SEPARATE SEXES OF WURMBEA DIOICA (COLCHICACEAE) IN SYMPATRY , 2001 .

[34]  R. B. Jackson,et al.  Gas exchange and photosynthetic acclimation over subambient to elevated CO2 in a C3–C4 grassland , 2001 .

[35]  H. W. Polley,et al.  Gas exchange and photosynthetic acclimation over subambient to elevated CO 2 in a C 3 -C 4 grassland , 2001 .

[36]  R. B. Jackson,et al.  Water in a changing world , 2001 .

[37]  G. Retallack Cenozoic Expansion of Grasslands and Climatic Cooling , 2001, The Journal of Geology.

[38]  G. Aronne,et al.  Seasonal Dimorphism in the Mediterranean Cistus incanus L. subsp. incanus , 2001 .

[39]  F. Woodward,et al.  Plant development: Signals from mature to new leaves , 2001, Nature.

[40]  A. Webb,et al.  The role of calcium in ABA-induced gene expression and stomatal movements. , 2001, The Plant journal : for cell and molecular biology.

[41]  P. Reich,et al.  Leaf gas exchange responses of 13 prairie grassland species to elevated CO2 and increased nitrogen supply , 2001 .

[42]  F. Woodward,et al.  Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models , 2001 .

[43]  S. Strogatz Exploring complex networks , 2001, Nature.

[44]  E. Kellogg,et al.  Evolutionary history of the grasses. , 2001, Plant physiology.

[45]  D. Royer,et al.  Stomatal density and stomatal index as indicators of paleoatmospheric CO(2) concentration. , 2001, Review of palaeobotany and palynology.

[46]  R. Ceulemans,et al.  Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. , 2001, The New phytologist.

[47]  Guirui Yu,et al.  An attempt to establish a synthetic model of photosynthesis-transpiration based on stomatal behavior for maize and soybean plants grown in field , 2001 .

[48]  J. Morison,et al.  Stomatal acclimation to increased CO2 concentration in a Florida scrub oak species Quercus myrtifolia Willd , 2001 .

[49]  F. Woodward,et al.  The HIC signalling pathway links CO2 perception to stomatal development , 2000, Nature.

[50]  H. Kaiser,et al.  In situ observation of stomatal movements and gas exchange of Aegopodium podagraria L. in the understorey. , 2000, Journal of experimental botany.

[51]  M. Kazda,et al.  Photosynthetic capacity in relation to nitrogen in the canopy of a Quercus robur, Fraxinus angustifolia and Tilia cordata flood plain forest. , 2000, Tree physiology.

[52]  A. Barabasi,et al.  Error and attack tolerance of complex networks , 2000, Nature.

[53]  F. A. Bazzaz,et al.  Changes in drought response strategies with ontogeny in Quercus rubra: implications for scaling from seedlings to mature trees , 2000, Oecologia.

[54]  K. Mott,et al.  Patchy stomatal conductance: emergent collective behaviour of stomata. , 2000, Trends in plant science.

[55]  R. W. Pearcy,et al.  Stomatal behavior and photosynthetic performance under dynamic light regimes in a seasonally dry tropical rain forest , 2000, Oecologia.

[56]  S. Somerville,et al.  Comparison of Erysiphe cichoracearum and E. cruciferarum and a survey of 360 Arabidopsis thaliana accessions for resistance to these two powdery mildew pathogens. , 1999, Molecular plant-microbe interactions : MPMI.

[57]  P. Giorio,et al.  Stomatal behaviour, leaf water status and photosynthetic response in field-grown olive trees under water deficit , 1999 .

[58]  T. Hsiao,et al.  Some characteristics of reduced leaf photosynthesis at midday in maize growing in the field , 1999 .

[59]  A. Jarvis,et al.  Stomatal behaviour, photosynthesis and transpiration under rising CO2. , 1999 .

[60]  D. Ellsworth CO2 enrichment in a maturing pine forest: are CO2 exchange and water status in the canopy affected? , 1999 .

[61]  Alain Vavasseur,et al.  Elevated CO2 enhances stomatal responses to osmotic stress and abscisic acid in Arabidopsis thaliana , 1999 .

[62]  A. Hetherington,et al.  Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[63]  B. Thomma,et al.  Concomitant Activation of Jasmonate and Ethylene Response Pathways Is Required for Induction of a Plant Defensin Gene in Arabidopsis , 1998, Plant Cell.

[64]  M. C. Grant,et al.  Variation in allozymes and stomatal size in pinyon (Pinus edulis, Pinaceae), associated with soil moisture. , 1998, American journal of botany.

[65]  P. Pinter,et al.  Photosynthesis and conductance of spring-wheat leaves: field response to continuous free-air atmospheric CO2 enrichment , 1998 .

[66]  Alain Vavasseur,et al.  CO2 sensing in stomata of abi1-1 and abi2-1 mutants of Arabidopsis thaliana , 1998 .

[67]  J. Vahala,et al.  Physiological, stomatal and ultrastructural ozone responses in birch (Betula pendula Roth.) are modified by water stress , 1998 .

[68]  H. Hass,et al.  Stomata in early land plants: an anatomical and ecophysiological approach , 1998 .

[69]  L. D. Talbott,et al.  The role of sucrose in guard cell osmoregulation , 1998 .

[70]  F. I. Woodward,et al.  Do plants really need stomata , 1998 .

[71]  R. Percy,et al.  Stomatal conductance predicts yields in irrigated Pima cotton and bread wheat grown at high temperatures , 1998 .

[72]  Alain Vavasseur,et al.  Interaction of stomatal responses to ABA and CO2 in Arabidopsis thaliana , 1998 .

[73]  A. Hetherington,et al.  Encoding specificity in Ca2+ signalling systems , 1998 .

[74]  Andrew J. Millar,et al.  Biological rhythms and photoperiodism in plants , 1998 .

[75]  M. Fetene,et al.  Photosynthesis and photoinhibition in a tropical alpine giant rosette plant, Lobelia rhynchopetalum. , 1997, The New phytologist.

[76]  M. Mishra Stomatal Characteristics at Different Ploidy Levels inCoffeaL. , 1997 .

[77]  A. Hetherington,et al.  Convergence of the Abscisic Acid, CO2, and Extracellular Calcium Signal Transduction Pathways in Stomatal Guard Cells , 1997, Plant Physiology.

[78]  F. Woodward,et al.  Changes in land plant function over the Phanerozoic: reconstructions based on the fossil record , 1997 .

[79]  D. Randall,et al.  A three‐dimensional synthesis study of δ18O in atmospheric CO2 1. Surface fluxes , 1997 .

[80]  T. Lawson,et al.  Heterogeneity in Stomatal Characteristics , 1997 .

[81]  S. A. Dudley DIFFERING SELECTION ON PLANT PHYSIOLOGICAL TRAITS IN RESPONSE TO ENVIRONMENTAL WATER AVAILABILITY: A TEST OF ADAPTIVE HYPOTHESES , 1996, Evolution; international journal of organic evolution.

[82]  G. Berlyn,et al.  Polyploids and their structural and physiological characteristics relative to water deficit in Betula papyrifera (Betulaceae) , 1996 .

[83]  F. Woodward,et al.  The influence of CO2 concentration on stomatal density , 1995 .

[84]  M. Roelfsema,et al.  Effect of abscisic acid on stomatal opening in isolated epidermal strips of abi mutants of Arabidopsis thaliana , 1995 .

[85]  A. Knapp,et al.  Effect of Elevated CO2 on Stomatal Density and Distribution in a C4 Grass and a C3 Forb under Field Conditions , 1994 .

[86]  Richard H. Waring,et al.  Evidence of Reduced Photosynthetic Rates in Old Trees , 1994, Forest Science.

[87]  M. Blanke,et al.  Stomata and Structure of Tetraploid Apple Leaves cultured in Vitro , 1994 .

[88]  C. Janis Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events , 1993 .

[89]  A. Knapp Gas Exchange Dynamics in C^3 and C^4 Grasses: Consequence of Differences in Stomatal Conductance , 1993 .

[90]  L. Avery,et al.  Ordering gene function: the interpretation of epistasis in regulatory hierarchies. , 1992, Trends in genetics : TIG.

[91]  D. Grantz,et al.  Stomatal response to blue light: water use efficiency in sugarcane and soybean* , 1991 .

[92]  A. Sugden Leaf anatomy in a Venezuelan montane forest , 1985 .

[93]  R. K. McConathy Tulip-poplar leaf diffusion resistance calculated from stomatal dimensions and varying environmental parameters , 1983 .

[94]  V. Kapos,et al.  Leaf Structure of Jamaican Upper Montane Rain-Forest Trees , 1982 .

[95]  S. Anagnostakis,et al.  Stomatal Response to Light of Solanum pennellii, Lycopersicon esculentum, and a Graft-induced Chimera. , 1978, Plant physiology.

[96]  H. Jones Transpiration in Barley Lines with Differing Stomatal Frequencies , 1977 .

[97]  I. Gindel Stomata constellation in the leaves of cotton, maize and wheat plants as a function of soil moisture and environment. , 1969, Physiologia plantarum.

[98]  G. Seidman,et al.  Stomatal Movements: a Yearly Rhythm , 1968, Nature.

[99]  W. Ruhland Encyclopedia of plant physiology. , 1958 .

[100]  T. Mansfield,et al.  Physiology of Stomata , 1908, Nature.

[101]  Mark Fricker,et al.  Stomata , 1919, Botanical Gazette.