Measurement of a Peak in the Cosmic Microwave Background Power Spectrum from the North American Test Flight of Boomerang

We describe a measurement of the angular power spectrum of anisotropies in the cosmic microwave background (CMB) at scales of 0.°3 to 5° from the North American test flight of the Boomerang experiment. Boomerang is a balloon-borne telescope with a bolometric receiver designed to map CMB anisotropies on a long-duration balloon flight. During a 6 hr test flight of a prototype system in 1997, we mapped more than 200 deg2 at high Galactic latitudes in two bands centered at 90 and 150 GHz with a resolution of 26' and 16.′5 FWHM, respectively. Analysis of the maps gives a power spectrum with a peak at angular scales of 1° with an amplitude 70 μKCMB.

[1]  A. Melchiorri,et al.  A Measurement of Ω from the North American Test Flight of Boomerang , 1999, The Astrophysical journal.

[2]  J. Borrill MADCAP - The Microwave Anisotropy Dataset Computational Analysis Package , 1999, astro-ph/9911389.

[3]  Andrew H. Jaffe,et al.  Simultaneous Estimation of Noise and Signal in Cosmic Microwave Background Experiments , 1999, astro-ph/9909250.

[4]  A. Lee,et al.  BOOMERanG: a scanning telescope for 10 arcminutes resolution CMB maps , 1999, astro-ph/9911520.

[5]  J. Puchalla,et al.  A Measurement of the Angular Power Spectrum of the Microwave Background Made from the High Chilean Andes , 1999, astro-ph/9905100.

[6]  J. Borrill The challenge of data analysis for future CMB observations , 1999, astro-ph/9903204.

[7]  P. Bernardis,et al.  A long duration cryostat suitable for balloon borne photometry , 1999 .

[8]  A. Jaffe,et al.  Computing challenges of the cosmic microwave background , 1999, Comput. Sci. Eng..

[9]  N. W. Halverson,et al.  Anisotropy in the Cosmic Microwave Background at Degree Angular Scales: Python V Results , 1999, astro-ph/9902195.

[10]  L. Knox Cosmic microwave background anisotropy window functions revisited , 1999, astro-ph/9902046.

[11]  A. Jaffe,et al.  Radical Compression of Cosmic Microwave Background Data , 1998, astro-ph/9808264.

[12]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[13]  P. Bernardis,et al.  A self-contained 3He refrigerator suitable for long duration balloon experiments , 1998 .

[14]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[15]  U. Toronto,et al.  Estimating the power spectrum of the cosmic microwave background , 1997, astro-ph/9708203.

[16]  H. D. Castillo,et al.  Composite infrared bolometers with Si3N4 micromesh absorbers. , 1997, Applied optics.

[17]  J. Puchalla,et al.  Whole-Disk Observations of Jupiter, Saturn, and Mars in Millimeter/Submillimeter Bands , 1996, astro-ph/9612040.

[18]  Max Tegmark How to measure CMB power spectra without losing information , 1996, astro-ph/9611174.

[19]  Edward J. Wollack,et al.  A Measurement of the Angular Power Spectrum of the Anisotropy in the Cosmic Microwave Background , 1996, astro-ph/9601197.

[20]  C. Bennett,et al.  Angular power spectrum of the microwave background anisotropy seen by the COBE differential microwave radiometer , 1994, astro-ph/9601059.

[21]  E. I. Robson,et al.  Submillimeter and millimeter observations of jupiter , 1986 .

[22]  S. Whitcomb,et al.  Far-infrared and submillimeter brightness temperatures of the giant planets , 1985 .

[23]  B. L. Ulich,et al.  Millimeter-wavelength continuum calibration sources , 1981 .