Model Reduction for Nonlinear Control Systems using Kernel Subspace Methods

We introduce a data-driven order reduction method for nonlinear control systems, drawing on recent progress in machine learning and statistical dimensionality reduction. The method rests on the assumption that the nonlinear system behaves linearly when lifted into a high (or infinite) dimensional feature space where balanced truncation may be carried out implicitly. This leads to a nonlinear reduction map which can be combined with a representation of the system belonging to a reproducing kernel Hilbert space to give a closed, reduced order dynamical system which captures the essential input-output characteristics of the original model. Empirical simulations illustrating the approach are also provided.

[1]  S. Smale,et al.  Shannon sampling II: Connections to learning theory , 2005 .

[2]  A. Krener Reduced Order Modeling of Nonlinear Control Systems , 2008 .

[3]  Jake Bouvrie,et al.  Balanced reduction of nonlinear control systems in reproducing kernel Hilbert space , 2010, 2010 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[4]  J. Phillips,et al.  Analog Macromodeling using Kernel Methods , 2003, ICCAD 2003.

[5]  Ding-Xuan Zhou,et al.  Capacity of reproducing kernel spaces in learning theory , 2003, IEEE Transactions on Information Theory.

[6]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[7]  Tomaso A. Poggio,et al.  Regularization Networks and Support Vector Machines , 2000, Adv. Comput. Math..

[8]  Gunnar Rätsch,et al.  Kernel PCA and De-Noising in Feature Spaces , 1998, NIPS.

[9]  Ronald R. Coifman,et al.  Diffusion Maps, Reduction Coordinates, and Low Dimensional Representation of Stochastic Systems , 2008, Multiscale Model. Simul..

[10]  The important state coordinates of a nonlinear system , 2007 .

[11]  Oskar Nilsson,et al.  On Modeling and Nonlinear Model Reduction in Automotive Systems , 2009 .

[12]  Kenji Fujimoto,et al.  Computation of nonlinear balanced realization and model reduction based on Taylor series expansion , 2008, Syst. Control. Lett..

[13]  G. Wahba Spline models for observational data , 1990 .

[14]  G. Dullerud,et al.  A Course in Robust Control Theory: A Convex Approach , 2005 .

[15]  Sijbren Weiland Theory of approximation and disturbance attenuation for linear systems. , 1991 .

[16]  Holger Wendland,et al.  Kernel techniques: From machine learning to meshless methods , 2006, Acta Numerica.

[17]  J. M. A. Scherpen,et al.  Balancing for nonlinear systems , 1993 .

[18]  G. Hewer,et al.  Necessary and sufficient conditions for balancing unstable systems , 1987 .

[19]  Jacquelien M.A. Scherpen,et al.  Balanced Realizations, Model Order Reduction, and the Hankel Operator , 2018, The Control Systems Handbook.

[20]  Arthur J. Krener,et al.  Model Reduction for Linear and Nonlinear Control Systems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[21]  J. Marsden,et al.  A subspace approach to balanced truncation for model reduction of nonlinear control systems , 2002 .

[22]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[23]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[24]  I. J. Schoenberg On Certain Metric Spaces Arising From Euclidean Spaces by a Change of Metric and Their Imbedding in Hilbert Space , 1937 .

[25]  Bernhard Schölkopf,et al.  Learning with kernels , 2001 .

[26]  Baver Okutmustur Reproducing kernel Hilbert spaces , 2005 .

[27]  Felipe Cucker,et al.  On the mathematical foundations of learning , 2001 .

[28]  Edmond A. Jonckheere,et al.  A new set of invariants for linear systems--Application to reduced order compensator design , 1983 .

[29]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[30]  Perinkulam S. Krishnaprasad,et al.  Computing Balanced Realizations for Nonlinear Systems , 2000 .

[31]  Erik Verriest,et al.  Suboptimal LQG-design via balanced realizations , 1981, 1981 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[32]  S. Smale,et al.  Shannon sampling and function reconstruction from point values , 2004 .

[33]  Erik I. Verriest,et al.  Algebraically Defined Gramians for Nonlinear Systems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[34]  Athanasios C. Antoulas,et al.  Approximation of Large-Scale Dynamical Systems , 2005, Advances in Design and Control.

[35]  I. J. Schoenberg Remarks to Maurice Frechet's Article ``Sur La Definition Axiomatique D'Une Classe D'Espace Distances Vectoriellement Applicable Sur L'Espace De Hilbert , 1935 .

[36]  S. Smale,et al.  ONLINE LEARNING WITH MARKOV SAMPLING , 2009 .

[37]  Jacquelien M. A. Scherpen,et al.  Balanced Realization and Model Order Reduction for Nonlinear Systems Based on Singular Value Analysis , 2010, SIAM J. Control. Optim..

[38]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[39]  C. P. Therapos,et al.  Balancing transformations for unstable nonminimal linear systems , 1989 .

[40]  Ivor W. Tsang,et al.  The pre-image problem in kernel methods , 2003, IEEE Transactions on Neural Networks.

[41]  R. Rifkin,et al.  Notes on Regularized Least Squares , 2007 .

[42]  Jing-Rebecca Li Model reduction of large linear systems via low rank system gramians , 2000 .