Construction of Rational Curves with Rational Rotation-Minimizing Frames via Möbius Transformations

We show that Mobius transformations preserve the rotation-minimizing frames which are associated with space curves. In addition, these transformations are known to preserve the class of rational Pythagorean-hodograph curves and rational frames. Based on these observations we derive an algorithm for G1 Hermite interpolation by rational Pythagorean-hodograph curves with rational rotation-minimizing frames.

[1]  Bert Jüttler,et al.  Computation of rotation minimizing frames , 2008, TOGS.

[2]  Rida T. Farouki,et al.  Exact rotation-minimizing frames for spatial Pythagorean-hodograph curves , 2002, Graph. Model..

[3]  Rida T. Farouki,et al.  Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable , 2007, Geometry and Computing.

[4]  Bert Jüttler Generating rational frames of space curves via hermite interpolation with Pythagorean hodograph cubic splines , 1998 .

[5]  Carla Manni,et al.  Quintic space curves with rational rotation-minimizing frames , 2009, Comput. Aided Geom. Des..

[6]  Hyeong In Choi,et al.  Euler-Rodrigues frames on spatial Pythagorean-hodograph curves , 2002, Comput. Aided Geom. Des..

[7]  H. GUGGENHEIMER Computing frames along a trajectory , 1989, Comput. Aided Geom. Des..

[8]  Stefan Leopoldseder Algorithms on cone spline surfaces and spatial osculating arc splines , 2001, Comput. Aided Geom. Des..

[9]  Kenji Ueda,et al.  Spherical Pythagorean-hodograph curves , 1998 .

[10]  A. F. Beardon,et al.  Continued Fractions, Möbius Transformations and Clifford Algebras , 2003 .

[11]  Bert Jüttler,et al.  Cubic Pythagorean hodograph spline curves and applications to sweep surface modeling , 1999, Comput. Aided Des..

[12]  Takis Sakkalis,et al.  Pythagorean-hodograph space curves , 1994, Adv. Comput. Math..

[13]  R. Bishop There is More than One Way to Frame a Curve , 1975 .

[14]  L. Ahlfors,et al.  Möbius transformations in expressed through 2×2 matrices of clifford numbers , 1986 .

[15]  G. M. Beffa,et al.  Poisson brackets associated to the conformal geometry of curves , 2004 .

[16]  D. Walton,et al.  Geometric Hermite interpolation with Tschirnhausen cubics , 1997 .

[17]  Bahram Ravani,et al.  Curves with rational Frenet-Serret motion , 1997, Comput. Aided Geom. Des..

[18]  Chang Yong Han Nonexistence of rational rotation-minimizing frames on cubic curves , 2008, Comput. Aided Geom. Des..

[19]  Helmut Pottmann,et al.  Contributions to Motion Based Surface Design , 1998, Int. J. Shape Model..

[20]  Barry Joe,et al.  Robust computation of the rotation minimizing frame for sweep surface modeling , 1997, Comput. Aided Des..

[21]  M. T. Vaughn Geometry in Physics , 2008 .

[22]  B. Jüttler,et al.  Rational approximation of rotation minimizing frames using Pythagorean-hodograph cubics , 1999 .

[23]  Yang Liu,et al.  Computation of Rotation Minimizing Frame , 2007 .

[24]  Hwan Pyo Moon,et al.  Clifford Algebra, Spin Representation, and Rational Parameterization of Curves and Surfaces , 2002, Adv. Comput. Math..