On approximating the depth and related problems

In this paper, we study the problem of finding a disk covering the largest number of red points, while avoiding all the blue points. We reduce it to the question of finding a deepest point in an arrangement of pseudodisks and provide a near-linear expected-time randomized approximation algorithm for this problem. As an application of our techniques, we show how to solve linear programming with violations approximately. We also prove that approximate range counting has roughly the same time and space complexity as answering emptiness range queries.

[1]  Micha Sharir,et al.  Vertical Decomposition of Shallow Levels in 3-Dimensional Arrangements and Its Applications , 1999, SIAM J. Comput..

[2]  Sunil Arya,et al.  Approximate range searching , 1995, SCG '95.

[3]  Micha Sharir,et al.  On approximate halfspace range counting and relative epsilon-approximations , 2007, SCG '07.

[4]  Mark H. Overmars,et al.  On a Class of O(n2) Problems in Computational Geometry , 1995, Comput. Geom..

[5]  Jirí Matousek,et al.  Reporting Points in Halfspaces , 1992, Comput. Geom..

[6]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[7]  Timothy M. Chan Random Sampling, Halfspace Range Reporting, and Construction of (<= k)-Levels in Three Dimensions , 2000, SIAM J. Comput..

[8]  J. Matoušek,et al.  On geometric optimization with few violated constraints , 1994, SCG '94.

[9]  David G. Kirkpatrick,et al.  A Linear Algorithm for Determining the Separation of Convex Polyhedra , 1985, J. Algorithms.

[10]  Micha Sharir,et al.  Fat Triangles Determine Linearly Many Holes , 1994, SIAM J. Comput..

[11]  Pankaj K. Agarwal,et al.  Geometric Range Searching and Its Relatives , 2007 .

[12]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[13]  Russ Bubley,et al.  Randomized algorithms , 1995, CSUR.

[14]  Alon Efrat,et al.  The complexity of the union of (α, β)-covered objects , 1999, SCG '99.

[15]  Micha Sharir,et al.  Onk-sets in arrangements of curves and surfaces , 1991, Discret. Comput. Geom..

[16]  Mariette Yvinec,et al.  Algorithmic geometry , 1998 .

[17]  David G. Kirkpatrick,et al.  Determining the Separation of Preprocessed Polyhedra - A Unified Approach , 1990, ICALP.

[18]  Kenneth L. Clarkson,et al.  Applications of random sampling in computational geometry, II , 1988, SCG '88.

[19]  Alon Efrat The Complexity of the Union of (alpha, beta)-Covered Objects , 2005, SIAM J. Comput..

[20]  Jirí Matousek,et al.  Range searching with efficient hierarchical cuttings , 1992, SCG '92.

[21]  Jacques Stern,et al.  The Hardness of Approximate Optima in Lattices, Codes, and Systems of Linear Equations , 1997, J. Comput. Syst. Sci..

[22]  Piotr Indyk,et al.  When crossings count — approximating the minimum spanning tree , 2000, SCG '00.

[23]  R. Motwani,et al.  High-Dimensional Computational Geometry , 2000 .

[24]  Timothy M. Chan Low-Dimensional Linear Programming with Violations , 2005, SIAM J. Comput..

[25]  Micha Sharir,et al.  Speeding up the incremental construction of the union of geometric objects in practice , 2004, Comput. Geom..

[26]  Sariel Har-Peled,et al.  Shape fitting with outliers , 2003, SCG '03.

[27]  Bernard Chazelle,et al.  How hard is halfspace range searching? , 1992, SCG '92.

[28]  Micha Sharir,et al.  On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles , 1986, Discret. Comput. Geom..

[29]  Peter L. Bartlett,et al.  Neural Network Learning - Theoretical Foundations , 1999 .

[30]  Haim Kaplan,et al.  Randomized incremental constructions of three-dimensional convex hulls and planar voronoi diagrams, and approximate range counting , 2006, SODA '06.

[31]  Jirí Matousek,et al.  Randomized Optimal Algorithm for Slope Selection , 1991, Inf. Process. Lett..

[32]  Michiel H. M. Smid,et al.  Translating a Planar Object to Maximize Point Containment , 2002, ESA.

[33]  Vladimir Vapnik,et al.  Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .

[34]  Edith Cohen,et al.  Size-Estimation Framework with Applications to Transitive Closure and Reachability , 1997, J. Comput. Syst. Sci..

[35]  Edoardo Amaldi,et al.  The Complexity and Approximability of Finding Maximum Feasible Subsystems of Linear Relations , 1995, Theor. Comput. Sci..

[36]  Ketan Mulmuley,et al.  On levels in arrangements and voronoi diagrams , 1991, Discret. Comput. Geom..

[37]  Piotr Indyk,et al.  Approximate nearest neighbors: towards removing the curse of dimensionality , 1998, STOC '98.

[38]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[39]  Micha Sharir,et al.  Davenport-Schinzel sequences and their geometric applications , 1995, Handbook of Computational Geometry.

[40]  Micha Sharir The Clarkson-Shor Technique Revisited And Extended , 2003, Comb. Probab. Comput..

[41]  David G. Stork,et al.  Pattern Classification , 1973 .

[42]  Benjamin Graham Office,et al.  Random Sampling , 2019, Encyclopedic Dictionary of Archaeology.