Subharmonics and the transition to chaos
暂无分享,去创建一个
[1] M. Gorman,et al. Visual observation of the second characteristic mode in a quasiperiodic flow , 1979 .
[2] F. Ursell,et al. Edge waves on a sloping beach , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[3] R. Davis,et al. Excitation of edge waves by waves incident on a beach , 1974 .
[4] B. A. Huberman,et al. Scaling Behavior of Chaotic Flows , 1980 .
[5] M. Giglio,et al. Transition to Chaotic Behavior via a Reproducible Sequence of Period-Doubling Bifurcations , 1981 .
[6] J. Rudnick,et al. Universality and the power spectrum at the onset of chaos , 1981 .
[7] A. Libchaber,et al. UNE EXPERIENCE DE RAYLEIGH-BENARD DE GEOMETRIE REDUITE ; MULTIPLICATION, ACCROCHAGE ET DEMULTIPLICATION DE FREQUENCES , 1980 .
[8] I. Rudnick,et al. Subharmonic Sequences in the Faraday Experiment: Departures from Period Doubling , 1981 .
[9] Jerry P. Gollub,et al. A SUBHARMONIC ROUTE TO TURBULENT CONVECTION * , 1980 .
[10] Mitchell J. Feigenbaum,et al. The onset spectrum of turbulence , 1979 .
[11] B. A. Huberman,et al. Theory of intermittency , 1982 .
[12] J. Eckmann,et al. A note on the power spectrum of the iterates of Feigenbaum's function , 1981 .
[13] Alfred Brian Pippard,et al. The physics of vibration , 1978 .
[14] M. Feigenbaum. Quantitative universality for a class of nonlinear transformations , 1978 .
[15] J. E. Hirsch,et al. Intermittency in the presence of noise: A renormalization group formulation , 1982 .
[16] Bambi Hu,et al. Exact Solutions to the Feigenbaum Renormalization-Group Equations for Intermittency , 1982 .