Subharmonics and the transition to chaos

[1]  M. Gorman,et al.  Visual observation of the second characteristic mode in a quasiperiodic flow , 1979 .

[2]  F. Ursell,et al.  Edge waves on a sloping beach , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[3]  R. Davis,et al.  Excitation of edge waves by waves incident on a beach , 1974 .

[4]  B. A. Huberman,et al.  Scaling Behavior of Chaotic Flows , 1980 .

[5]  M. Giglio,et al.  Transition to Chaotic Behavior via a Reproducible Sequence of Period-Doubling Bifurcations , 1981 .

[6]  J. Rudnick,et al.  Universality and the power spectrum at the onset of chaos , 1981 .

[7]  A. Libchaber,et al.  UNE EXPERIENCE DE RAYLEIGH-BENARD DE GEOMETRIE REDUITE ; MULTIPLICATION, ACCROCHAGE ET DEMULTIPLICATION DE FREQUENCES , 1980 .

[8]  I. Rudnick,et al.  Subharmonic Sequences in the Faraday Experiment: Departures from Period Doubling , 1981 .

[9]  Jerry P. Gollub,et al.  A SUBHARMONIC ROUTE TO TURBULENT CONVECTION * , 1980 .

[10]  Mitchell J. Feigenbaum,et al.  The onset spectrum of turbulence , 1979 .

[11]  B. A. Huberman,et al.  Theory of intermittency , 1982 .

[12]  J. Eckmann,et al.  A note on the power spectrum of the iterates of Feigenbaum's function , 1981 .

[13]  Alfred Brian Pippard,et al.  The physics of vibration , 1978 .

[14]  M. Feigenbaum Quantitative universality for a class of nonlinear transformations , 1978 .

[15]  J. E. Hirsch,et al.  Intermittency in the presence of noise: A renormalization group formulation , 1982 .

[16]  Bambi Hu,et al.  Exact Solutions to the Feigenbaum Renormalization-Group Equations for Intermittency , 1982 .