Modeling and Detection of Deforestation and Forest Growth in Multitemporal TanDEM-X Data

This paper compares three approaches to forest change modeling in multitemporal (MT) InSAR data acquired with the X-band system TanDEM-X over a forest with known topography. Volume decorrelation is modeled with the two-level model (TLM), which describes forest scattering using two parameters: forest height <inline-formula> <tex-math notation="LaTeX">$h$</tex-math></inline-formula> and vegetation scattering fraction <inline-formula> <tex-math notation="LaTeX">$\zeta$</tex-math></inline-formula>, accounting for both canopy cover and electromagnetic scattering properties. The single-temporal (ST) approach allows both <inline-formula><tex-math notation="LaTeX">$h$ </tex-math></inline-formula> and <inline-formula><tex-math notation="LaTeX">$\zeta$</tex-math></inline-formula> to change between acquisitions. The MT approach keeps <inline-formula><tex-math notation="LaTeX">$h$</tex-math> </inline-formula> constant and models all change by varying <inline-formula><tex-math notation="LaTeX">$\zeta$ </tex-math></inline-formula>. The MT growth (MTG) approach is based on MT, but it accounts for height growth by letting <inline-formula><tex-math notation="LaTeX">$h$</tex-math></inline-formula> have a constant annual increase. Monte Carlo simulations show that MT is more robust than ST with respect to coherence and phase calibration errors and height estimation ambiguities. All three inversion approaches are also applied to 12 VV-polarized TanDEM-X acquisitions made during the summers of 2011–2014 over Remningstorp, a hemiboreal forest in southern Sweden. MT and MTG show better height estimation performance than ST, and MTG provides more consistent canopy cover estimates than MT. For MTG, the root-mean-square difference is 1.1 m (6.6%; <inline-formula> <tex-math notation="LaTeX">$r=0.92$</tex-math></inline-formula>) for forest height and 0.16 (22%; <inline-formula><tex-math notation="LaTeX">$r=0.48$</tex-math></inline-formula>) for canopy cover, compared with similar metrics from airborne lidar scanning (ALS). The annual height increase estimated with MTG is found correlated with a related ALS metric, although a bias is observed. A deforestation detection method is proposed, correctly detecting 15 out of 19 areas with canopy cover loss above 50%.

[1]  Lars M. H. Ulander,et al.  Estimation of forest parameters using CARABAS-II VHF SAR data , 2000, IEEE Trans. Geosci. Remote. Sens..

[2]  M. Dobson,et al.  The use of Imaging radars for ecological applications : A review , 1997 .

[3]  Thuy Le Toan,et al.  Dependence of radar backscatter on coniferous forest biomass , 1992, IEEE Trans. Geosci. Remote. Sens..

[4]  Howard A. Zebker,et al.  Decorrelation in interferometric radar echoes , 1992, IEEE Trans. Geosci. Remote. Sens..

[5]  Gerhard Krieger,et al.  TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Marco Lavalle,et al.  A Temporal Decorrelation Model for Polarimetric Radar Interferometers , 2012, IEEE Transactions on Geoscience and Remote Sensing.

[7]  Konstantinos Papathanassiou,et al.  Single-baseline polarimetric SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[8]  Lars M. H. Ulander,et al.  Repeat-pass SAR interferometry over forested terrain , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[9]  J. Sperry,et al.  Xylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse-porous, and conifer species. , 1992, Plant physiology.

[10]  Lars M. H. Ulander,et al.  Estimation of Forest Height and Canopy Density From a Single InSAR Correlation Coefficient , 2015, IEEE Geoscience and Remote Sensing Letters.

[11]  Lars M. H. Ulander,et al.  Digital elevation map generation using VHF-band SAR data in forested areas , 2002, IEEE Trans. Geosci. Remote. Sens..

[12]  Lars M. H. Ulander,et al.  Biomass estimation in a boreal forest from TanDEM-X data, lidar DTM, and the interferometric water cloud model , 2017 .

[13]  Lars M. H. Ulander,et al.  Detection of forest change and robust estimation of forest height from two-level model inversion of multi-temporal, single-pass InSAR data , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[14]  Lars-Gunnar Romell Växttidsundersökningar å tall och gran , 1925 .

[15]  Mario Costantini,et al.  A novel phase unwrapping method based on network programming , 1998, IEEE Trans. Geosci. Remote. Sens..

[16]  Thomas F. Coleman,et al.  An Interior Trust Region Approach for Nonlinear Minimization Subject to Bounds , 1993, SIAM J. Optim..

[17]  Lars M. H. Ulander,et al.  Measurements of Forest Biomass Change Using P-Band Synthetic Aperture Radar Backscatter , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Urs Wegmüller,et al.  Retrieval of growing stock volume in boreal forest using hyper-temporal series of Envisat ASAR ScanSAR backscatter measurements , 2011 .

[19]  Lars M. H. Ulander,et al.  Estimation of Forest Biomass From Two-Level Model Inversion of Single-Pass InSAR Data , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Maurizio Santoro,et al.  Model-Based Biomass Estimation of a Hemi-Boreal Forest from Multitemporal TanDEM-X Acquisitions , 2013, Remote. Sens..

[21]  Thuy Le Toan,et al.  Relating forest biomass to SAR data , 1992, IEEE Trans. Geosci. Remote. Sens..

[22]  Maurizio Santoro,et al.  Stem volume retrieval in boreal forests from ERS-1/2 interferometry , 2002 .

[23]  Lars M. H. Ulander,et al.  Retrieval of forest stem volume using VHF SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[24]  L. Ulander,et al.  BIOSAR 2007:Technical Assistance for the Development of Airborne SAR and Geophysical Measurements during the BioSAR 2007 Experiment , 2008 .

[25]  Barbara Koch,et al.  Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment , 2010 .

[26]  Irena Hajnsek,et al.  Tropical-Forest-Parameter Estimation by Means of Pol-InSAR: The INDREX-II Campaign , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[27]  Lars M. H. Ulander,et al.  Mapping and modeling of boreal forest change in tandem-x data with the two-level model , 2017, 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[28]  Lars M. H. Ulander,et al.  L- and P-band backscatter intensity for biomass retrieval in hemiboreal forest , 2011 .

[29]  Sandra Englhart,et al.  Aboveground biomass retrieval in tropical forests — The potential of combined X- and L-band SAR data use , 2011 .

[30]  John D. Vona,et al.  Vegetation height estimation from Shuttle Radar Topography Mission and National Elevation Datasets , 2004 .

[31]  G. Bonan Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests , 2008, Science.

[32]  Lars M. H. Ulander,et al.  Mapping Topography and Forest Parameters in a Boreal Forest with Dual-Baseline TanDEM-X Data and the Two-Level Model , 2016 .

[33]  佐藤 晃一,et al.  Polarimetric SAR Interferometryによる森林の特徴について , 2000 .

[34]  E. Rodríguez,et al.  Theory and design of interferometric synthetic aperture radars , 1992 .

[35]  Irena Hajnsek,et al.  TanDEM-X Pol-InSAR Performance for Forest Height Estimation , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[36]  Maurizio Santoro,et al.  On the Estimation of Boreal Forest Biomass From TanDEM-X Data Without Training Samples , 2015, IEEE Geoscience and Remote Sensing Letters.

[37]  Maurizio Santoro,et al.  Multitemporal repeat pass SAR interferometry of boreal forests , 2003, IEEE Transactions on Geoscience and Remote Sensing.

[38]  Lars M. H. Ulander,et al.  Two-Level Forest Model Inversion of Interferometric TanDEM-X Data , 2014 .

[39]  J. Fransson Estimation of stem volume in boreal forests using ERS-1 C- and JERS-1 L-band SAR data , 1999 .

[40]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[41]  C. Werner,et al.  Radar interferogram filtering for geophysical applications , 1998 .

[42]  Lars M. H. Ulander,et al.  Estimation of Boreal Forest Properties From TanDEM-X Data Using Inversion of the Interferometric Water Cloud Model , 2017, IEEE Geoscience and Remote Sensing Letters.

[43]  Konstantinos Papathanassiou,et al.  Pine Forest Height Inversion Using Single-Pass X-Band PolInSAR Data , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[44]  Chris Varekamp,et al.  Observation of tropical rain forest trees by airborne high-resolution interferometric radar , 2000, IEEE Trans. Geosci. Remote. Sens..

[45]  Marco Lavalle,et al.  Extraction of Structural and Dynamic Properties of Forests From Polarimetric-Interferometric SAR Data Affected by Temporal Decorrelation , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[46]  C. Justice,et al.  High-Resolution Global Maps of 21st-Century Forest Cover Change , 2013, Science.

[47]  Lars M. H. Ulander,et al.  C-band repeat-pass interferometric SAR observations of the forest , 1997, IEEE Trans. Geosci. Remote. Sens..

[48]  Pascale Dubois-Fernandez,et al.  Forest Height Inversion Using High-Resolution P-Band Pol-InSAR Data , 2008, IEEE Transactions on Geoscience and Remote Sensing.