Heterogeneous Integration of III–V Lasers on Si by Bonding

Abstract Integration of III–V materials with silicon photonics using bonding allows the addition of lasers and optical amplifiers to this platform, which are critical elements in most photonic integrated circuit applications. The bonding approach allows integration of a wide range of materials with silicon and is compatible with high-volume wafer-scale production in sophisticated silicon fabrication facilities. Alternatively, the addition of the superior silicon waveguide to III–V laser devices enables better performance in narrow-linewidth single-wavelength and mode-locked lasers. This chapter will provide an introduction to the technology, the basic elements of the fabrication process for a heterogeneous laser, and then follow with technological demonstrations of these devices.

[1]  John E. Bowers,et al.  Heterogeneous Silicon/III–V Semiconductor Optical Amplifiers , 2016, IEEE Journal of Selected Topics in Quantum Electronics.

[2]  Barry L. Shoop Photonic analog-to-digital conversion , 2001 .

[3]  R Baets,et al.  Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. , 2007, Optics express.

[4]  Douglas B. Leviton,et al.  Temperature-dependent refractive index of silicon and germanium , 2006, SPIE Astronomical Telescopes + Instrumentation.

[5]  van Pj René Veldhoven,et al.  Ultra-thin DVS-BCB adhesive bonding of III-V wafers, dies and multiple dies to a patterned silicon-on-insulator substrate , 2013 .

[6]  Di Liang,et al.  Low Threshold Electrically-Pumped Hybrid Silicon Microring Lasers , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[7]  Di Liang,et al.  A distributed feedback silicon evanescent laser. , 2008, Optics express.

[8]  J. Bowers,et al.  Passive microring-resonator-coupled lasers , 2001 .

[9]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[10]  E. Bente,et al.  Record bandwidth and sub-picosecond pulses from a monolithically integrated mode-locked quantum well ring laser. , 2014, Optics express.

[11]  Alan Y. Liu,et al.  Heterogeneous Silicon Photonic Integrated Circuits , 2016, Journal of Lightwave Technology.

[12]  A. Yariv,et al.  High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III-V platforms , 2014, Proceedings of the National Academy of Sciences.

[13]  Shekhar Guha,et al.  Wavelength dependence of two photon and free carrier absorptions in InP. , 2009, Optics express.

[14]  R. Baets,et al.  Design of a Hybrid III–V-on-Silicon Microlaser With Resonant Cavity Mirrors , 2013, IEEE Photonics Journal.

[15]  G. Kurczveil,et al.  Integrated finely tunable microring laser on silicon , 2016, Nature Photonics.

[16]  H. Yamazaki,et al.  Silicon Photonic Hybrid Ring-Filter External Cavity Wavelength Tunable Lasers , 2015, Journal of Lightwave Technology.

[17]  C. Henry,et al.  The relation of line narrowing and chirp reduction resulting from the coupling of a semiconductor laser to passive resonator , 1987 .

[18]  Di Liang,et al.  Robust hybrid quantum dot laser for integrated silicon photonics. , 2016, Optics express.

[19]  N. Doran,et al.  Nonlinear-optical loop mirror. , 1988, Optics letters.

[20]  G. Duan,et al.  New advances on heterogeneous integration of III-V on silicon , 2015, 2014 The European Conference on Optical Communication (ECOC).

[21]  Larry A. Coldren,et al.  Integrated 30GHz passive ring mode-locked laser with gain flattening filter , 2010, 22nd IEEE International Semiconductor Laser Conference.

[22]  L. Coldren,et al.  Fully integrated hybrid silicon two dimensional beam scanner. , 2015, Optics express.

[23]  Xinwan Li,et al.  Tunable silicon Fabry-Perot comb filters formed by Sagnac loop mirrors. , 2013, Optics letters.

[24]  Michael L Davenport,et al.  Low threshold and high speed short cavity distributed feedback hybrid silicon lasers. , 2014, Optics express.

[25]  J. Bowers,et al.  Integrated heterogeneous silicon/III–V mode-locked lasers , 2018 .

[26]  A. Yariv,et al.  Sub-kHz quantum linewidth semiconductor laser on silicon chip , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[27]  J. Bowers,et al.  Wide tunable double ring resonator coupled lasers , 2002, IEEE Photonics Technology Letters.

[28]  Fabrizio Berizzi,et al.  A fully photonics-based coherent radar system , 2014, Nature.

[29]  T. Okoshi,et al.  Estimation of linewidth enhancement factor of AlGaAs lasers by correlation measurement between FM and AM noises , 1985 .

[30]  G. Roelkens,et al.  Heterogeneously integrated III-V/Si single mode lasers based on a MMI-ring configuration and triplet-ring reflectors , 2013, Microtechnologies for the New Millennium.

[31]  M.K. Smit,et al.  Measurement of reflectivity of butt-joint active-passive interfaces in integrated extended cavity lasers , 2005, IEEE Photonics Technology Letters.

[32]  Tin Komljenovic,et al.  Fully integrated microwave frequency synthesizer on heterogeneous silicon-III/V. , 2017, Optics express.

[33]  John E. Bowers,et al.  Silicon heterointerface photodetector , 1996 .

[34]  Daniel T. Cassidy,et al.  Technique for measurement of the gain spectra of semiconductor diode lasers , 1984 .

[35]  E. Bente,et al.  A III-V-on-Si ultra-dense comb laser , 2016, Light: Science & Applications.

[36]  J. Bowers,et al.  Integrated optical driver for interferometric optical gyroscopes. , 2017, Optics express.

[37]  John E. Bowers,et al.  Widely-Tunable Ring-Resonator Semiconductor Lasers , 2017 .

[38]  H. C. Casey,et al.  Variation of intervalence band absorption with hole concentration in p‐type InP , 1984 .

[39]  Di Liang,et al.  Design of phase-shifted hybrid silicon distributed feedback lasers. , 2011, Optics express.

[40]  J. Bowers,et al.  Coupled-Ring-Resonator-Mirror-Based Heterogeneous III–V Silicon Tunable Laser , 2015, IEEE Photonics Journal.

[41]  J. Bauwelinck,et al.  III-V-on-Silicon Photonic Devices for Optical Communication and Sensing , 2015 .

[42]  U. Gösele,et al.  Heterogeneous Integration of Compound Semiconductors , 2010 .

[43]  M. Romagnoli,et al.  An electrically pumped germanium laser. , 2012, Optics express.

[44]  J.L. Hall,et al.  Optical frequency measurement: 40 years of technology revolutions , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[45]  David Chapman,et al.  Uniformity study of wafer-scale InP-to-silicon hybrid integration , 2011 .

[46]  R. W. Glew,et al.  Intervalence band absorption in strained and unstrained InGaAs multiple quantum well structures , 1992 .

[47]  Jerry R. Meyer,et al.  Heterogeneous Integration for Mid-infrared Silicon Photonics , 2017, IEEE Journal of Selected Topics in Quantum Electronics.

[48]  Amnon Yariv,et al.  Optically pumped GaAs surface laser with corrugation feedback , 1973 .

[49]  Hyundai Park,et al.  A continuous-wave hybrid AlGaInAs-silicon evanescent laser , 2006, IEEE Photonics Technology Letters.

[50]  J. Bowers,et al.  Electrically pumped hybrid AlGaInAs-silicon evanescent laser. , 2006, Optics express.

[51]  Takuro Fujii,et al.  Directly modulated buried heterostructure DFB laser on SiO₂/Si substrate fabricated by regrowth of InP using bonded active layer. , 2014, Optics express.

[52]  J. Bowers,et al.  Hybrid Silicon Photonic Integrated Circuit Technology , 2013, IEEE Journal of Selected Topics in Quantum Electronics.