Into darkness: From high density quenching to near-infrared scintillators

In many aspects measurement of the α/β ratio has advantages over other methods. It provides higher precision and higher density of excitation than is available with Compton or photoelectric effect electrons. It has been shown that the α/β ratio follows the same trends and patterns as previously found for nonproportionality of electron/ gamma photon response. The α/β ratio also correlates with intrinsic energy resolution measured with 10 keV gamma photons. Materials with high α/β ratio have high intrinsic energy resolution at high density of excitation. The same trend is observed for 662 keV gamma photons with exception of alkali halides and ZnSe:Te. We have found that alkali halides have lowintensity of quenching and performbetter than LaBr3:Ce and LaCl3:Ce at high density excitation (with α particles or 10 keV electrons). The superiority of LaBr3:Ce and LaCl3:Ce over alkali halides probably comes not from high resistivity to high density quenching, but from lack of a low density quenching which is responsible for the "hump" in an electron/gamma nonproportionality curve. We can conclude, that halide-based scintillators are the most promising for discovering new highly proportional materials.

[1]  P. Dorenbos,et al.  CsBa2I5:Eu2+,Sm2+—The First High‐Energy Resolution Black Scintillator for γ‐Ray Spectroscopy , 2019, physica status solidi (RRL) – Rapid Research Letters.

[2]  L. Carlos,et al.  Lanthanide‐Based Thermometers: At the Cutting‐Edge of Luminescence Thermometry , 2018, Advanced Optical Materials.

[3]  P. Dorenbos,et al.  Needs, Trends, and Advances in Inorganic Scintillators , 2018, IEEE Transactions on Nuclear Science.

[4]  P. Dorenbos,et al.  Time-resolved gamma spectroscopy of single events , 2018 .

[5]  W. Ryba-Romanowski,et al.  Optical spectra and excited state relaxation dynamics of Sm 2+ ions in SrCl 2 , SrBr 2 and SrI 2 crystals , 2018 .

[6]  Nicola Zorzi,et al.  Silicon photomultipliers and single-photon avalanche diodes with enhanced NIR detection efficiency at FBK , 2017, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[7]  P. Dorenbos,et al.  Shape of intrinsic alpha pulse height spectra in lanthanide halide scintillators , 2017 .

[8]  P. Dorenbos,et al.  Nonproportional Response of Scintillators to Alpha Particle Excitation , 2017, IEEE Transactions on Nuclear Science.

[9]  A. Enqvist,et al.  Measuring the scintillation decay time for different energy deposited by γ-rays and neutrons in a Cs 2 LiYCl 6 :Ce 3+ detector , 2017 .

[10]  M. Moszynski,et al.  Energy-Dependent Scintillation Pulse Shape and Proportionality of Decay Components for CsI:Tl: Modeling with Transport and Rate Equations , 2017 .

[11]  B. Phlips,et al.  Characterization of the internal background for thermal and fast neutron detection with CLLB , 2016 .

[12]  Paul Lecoq,et al.  Development of new scintillators for medical applications , 2016 .

[13]  P. Dorenbos,et al.  Luminescence and spectroscopic properties of Sm2+ and Er3+ doped SrI2 , 2015 .

[14]  Qi Li,et al.  Coupled rate and transport equations modeling proportionality of light yield in high-energy electron tracks: CsI at 295 K and 100 K; CsI:Tl at 295 K , 2015 .

[15]  R. Ogawara,et al.  Feasibility study on signal separation for spontaneous alpha decay in LaBr3: Ce scintillator by signal peak-to-charge discrimination. , 2015, The Review of scientific instruments.

[16]  S. Payne Nonproportionality of Scintillator Detectors. IV. Resolution Contribution from Delta-Rays , 2015, IEEE Transactions on Nuclear Science.

[17]  P. Dorenbos,et al.  Intrinsic scintillation pulse shape measurements by means of picosecond x-ray excitation for fast timing applications , 2014 .

[18]  P. Menge,et al.  Enhanced α-γ discrimination in co-doped LaBr3:Ce , 2014, 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC).

[19]  S. Payne,et al.  Nonproportionality of Scintillator Detectors. III. Temperature Dependence Studies , 2014, IEEE Transactions on Nuclear Science.

[20]  R. Cerulli,et al.  Investigation of rare nuclear decays with BaF2 crystal scintillator contaminated by radium , 2014, 1407.5844.

[21]  C. M. Bartle,et al.  Samarium doped calcium fluoride: A red scintillator and X-ray phosphor , 2014 .

[22]  T. Shikama,et al.  Crystal Growth and Luminescence Properties of Yb-doped Gd 3 Al 2 Ga 3 O 12 Infra-red Scintillator , 2014 .

[23]  F. Patrick Doty,et al.  Effect of Humidity on Scintillation Performance in Na and Tl Activated CsI Crystals , 2014, IEEE Transactions on Nuclear Science.

[24]  N. Nica Nuclear Data Sheets for A = 148 , 2014 .

[25]  P. Dorenbos,et al.  Scintillation and detection characteristics of high-sensitivity CeBr3 gamma-ray spectrometers , 2013 .

[26]  I. V. Khodyuk,et al.  Energy resolution and related charge carrier mobility in LaBr3:Ce scintillators , 2013 .

[27]  Fei Gao,et al.  Experimental and computational results on exciton/free-carrier ratio, hot/thermalized carrier diffusion, and linear/nonlinear rate constants affecting scintillator proportionality , 2013, Optics & Photonics - Optical Engineering + Applications.

[28]  M. Moszynski,et al.  Performance of cerium-doped Gd3Al2Ga3O12 (GAGG:Ce) scintillator in gamma-ray spectrometry , 2013 .

[29]  I. V. Khodyuk,et al.  Improvement of γ-ray energy resolution of LaBr3:Ce3+ scintillation detectors by Sr2+ and Ca2+ co-doping , 2013 .

[30]  Arnold Burger,et al.  Nonlinear quenching of densely excited states in wide-gap solids , 2013 .

[31]  S. Oberstedt,et al.  Radiopurity of a CeBr3 crystal used as scintillation detector , 2013 .

[32]  K. Shah,et al.  Promising Alkaline Earth Halide Scintillators for Gamma-Ray Spectroscopy , 2013, IEEE Transactions on Nuclear Science.

[33]  Masaaki Kobayashi,et al.  Significantly different pulse shapes for γ- and α-rays in Gd3Al2Ga3O12:Ce3+ scintillating crystals , 2012 .

[34]  M. Moszynski,et al.  Electron response of some low-Z scintillators in wide energy range , 2012 .

[35]  I. V. Khodyuk,et al.  Trends and Patterns of Scintillator Nonproportionality , 2012, IEEE Transactions on Nuclear Science.

[36]  Stephen A. Payne,et al.  Plastic scintillators with efficient neutron/gamma pulse shape discrimination , 2012 .

[37]  Owen B. Drury,et al.  Characteristics of undoped and europium-doped SrI2 scintillator detectors , 2011, 2011 IEEE Nuclear Science Symposium Conference Record.

[38]  G. Bizarri,et al.  Measuring the dependence of the decay curve on the electron energy deposit in NaI(Tl) , 2011 .

[39]  I. V. Khodyuk,et al.  Scintillation properties and self absorption in SrI2:Eu2+ , 2010, IEEE Nuclear Science Symposuim & Medical Imaging Conference.

[40]  C. Arnaboldi,et al.  Characterization of ZnSe scintillating bolometers for Double Beta Decay , 2010, 1006.2721.

[41]  I. V. Khodyuk,et al.  Nonproportional Response Between 0.1–100 keV Energy by Means of Highly Monochromatic Synchrotron X-Rays , 2010, IEEE Transactions on Nuclear Science.

[42]  I. V. Khodyuk,et al.  Nonproportional scintillation response of NaI:Tl to low energy x-ray photons and electrons , 2010, 1102.3799.

[43]  Woon-Seng Choong,et al.  Nonproportionality of Scintillator Detectors: Theory and Experiment , 2010, IEEE Transactions on Nuclear Science.

[44]  J. Beeman,et al.  CdWO4 scintillating bolometer for Double Beta Decay: Light and heat anticorrelation, light yield and quenching factors , 2010, 1005.1239.

[45]  V. Tretyak,et al.  Semi-empirical calculation of quenching factors for ions in scintillators , 2009, 0911.3041.

[46]  Mario Martínez,et al.  A BGO scintillating bolometer as dark matter detector prototype , 2009 .

[47]  G. Hull,et al.  New Organic Crystals for Pulse Shape Discrimination , 2009, IEEE Transactions on Nuclear Science.

[48]  P. Dorenbos,et al.  Advances in Yield Calibration of Scintillators , 2008, IEEE Transactions on Nuclear Science.

[49]  G. Hull,et al.  Design of a Facility for Measuring Scintillator Non-Proportionality , 2008, IEEE Transactions on Nuclear Science.

[50]  Woon-Seng Choong,et al.  Performance of a Facility for Measuring Scintillator Non-Proportionality , 2008, IEEE Transactions on Nuclear Science.

[51]  P. Dorenbos,et al.  CeBr$_{3}$ Scintillator Development for Possible Use in Space Missions , 2008, IEEE Transactions on Nuclear Science.

[52]  R. Zhu,et al.  Optical and Scintillation Properties of Inorganic Scintillators in High Energy Physics , 2007, IEEE Transactions on Nuclear Science.

[53]  M. Kawaharada,et al.  Temperature dependence of α/γ-ratio of GSO(Ce) scintillator , 2007, 2007 IEEE Nuclear Science Symposium Conference Record.

[54]  V. Kobychev,et al.  Pulse-shape discrimination with PbWO 4 crystal scintillators , 2007 .

[55]  N. Galunov,et al.  Ionizing radiation energy exchange in the regions of high activation density of organic scintillators , 2007 .

[56]  B. Milbrath,et al.  Contamination Studies of LaCl$_3$:Ce Scintillators , 2006, IEEE Transactions on Nuclear Science.

[57]  P. Lecoq,et al.  Inorganic Scintillators for Detector Systems: Physical Principles and Crystal Engineering , 2006 .

[58]  B. McDonald,et al.  Characterization of alpha contamination in lanthanum trichloride scintillators using coincidence measurements , 2005 .

[59]  J. Hartwell,et al.  Observations on the background spectra of four LaCl 3 Ce scintillation detectors. , 2005, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[60]  F. Avignone,et al.  Scintillation properties and radioactive contamination of CaWO4 crystal scintillators , 2005 .

[61]  M. Moszynski,et al.  Comparison of LaCl3:Ce and NaI(Tl) scintillators in γ-ray spectrometry , 2005 .

[62]  A. M. Kudin,et al.  Factors which define the α/γ ratio in CsI:Tl crystals , 2005 .

[63]  W. Kernan Self-activity in lanthanum halides , 2004, IEEE Symposium Conference Record Nuclear Science 2004..

[64]  V. Kobychev,et al.  Performances of a CeF3 crystal scintillator and its application to the search for rare processes , 2003 .

[65]  P. Dorenbos f ? d transition energies of divalent lanthanides in inorganic compounds , 2003 .

[66]  P. Dorenbos,et al.  Alpha–gamma pulse shape discrimination in CsI:Tl, CsI:Na and BaF2 scintillators , 2002 .

[67]  M. Moszynski,et al.  Large area avalanche photodiodes in scintillation and X-rays detection $ , 2002 .

[68]  M. Moszynski,et al.  Energy resolution and light yield non-proportionality of ZnSe : Te scintillator studied by large area avalanche photodiodes and photomultipliers , 2002 .

[69]  M. Fujiwara,et al.  Measurement of intrinsic radioactivity in a GSO crystal , 2002 .

[70]  V. Kobychev,et al.  Quest for double beta decay of 160Gd and Ce isotopes , 2000, nucl-ex/0011020.

[71]  J. Ma,et al.  New limits on spin-dependent coupled WIMPs and on 2β processes in 40Ca and 46Ca by using low radioactive CaF2(Eu) crystal scintillators , 1999 .

[72]  O. Zelenskaya,et al.  The study of α/γ ratio for inorganic scintillation detectors , 1998 .

[73]  D. Wolski,et al.  Properties of the YAP : Ce scintillator , 1998 .

[74]  Fons Rademakers,et al.  ROOT — An object oriented data analysis framework , 1997 .

[75]  V. N. Kuts,et al.  Quest for neutrinoless double beta decay of 160Gd , 1996 .

[76]  J. D. Valentine,et al.  Benchmarking the Compton coincidence technique for measuring electron response non-proportionality in inorganic scintillators , 1995, 1995 IEEE Nuclear Science Symposium and Medical Imaging Conference Record.

[77]  J. Valentine,et al.  Design of a Compton spectrometer experiment for studying scintillator non-linearity and intrinsic energy resolution , 1994 .

[78]  G. Mageras,et al.  A measurement of the light yield of common inorganic scintillators , 1988 .

[79]  Martin J. Berger,et al.  Evaluation of the collision stopping power of elements and compounds for electrons and positrons , 1982 .

[80]  K Skrable,et al.  A general equation for the kinetics of linear first order phenomena and suggested applications. , 1974, Health physics.

[81]  J. B. Birks,et al.  The Theory and Practice of Scintillation Counting , 1965 .

[82]  A. Flammersfeld,et al.  Szintillationslichtausbeuten organischer Molekülkristalle für α-Strahlen und Elektronen , 1964 .

[83]  J. B. Czirr The α/β ratio of several organic scintillators , 1963 .

[84]  R. B. Murray,et al.  Scintillation Process in CsI(Tl). I. Comparison with Activator Saturation Model , 1963 .

[85]  R. B. Murray,et al.  Scintillation Process in CsI(Tl). II. Emission Spectra and the Possible Role of Self-Trapped Holes , 1963 .

[86]  R. B. Murray,et al.  Effect of Energetic Secondary Electrons on the Scintillation Process in Alkali Halide Crystals , 1962 .

[87]  R. B. Murray,et al.  Scintillation Response of Activated Inorganic Crystals to Various Charged Particles , 1961 .

[88]  G. Restelli,et al.  ALPHA-PULSE ANALYSIS BY SCINTILLATION DETECTORS , 1960 .

[89]  R. W. Pringle,et al.  The Gamma-Rays from Neutron-Activated Gold , 1950 .

[90]  R. Hofstadter The Detection of Gamma-Rays with Thallium-Activated Sodium Iodide Crystals , 1949 .

[91]  W. Klemm,et al.  Messungen an zwei- und vierwertigen Verbindungen der seltenen Erden. VII. Über die Struktur einiger Dihalogenide , 1939 .

[92]  L. Manuel,et al.  Discovery and Development of Potassium-Based Metal Halide Scintillators for Radiation Detection Applications , 2018 .

[93]  Ryan J. Shawgo,et al.  New Developments in Scintillators for Security Applications , 2017 .

[94]  P. Dorenbos,et al.  Optical and scintillation properties of CsBa2I5:Eu2+ , 2014 .

[95]  A. Owens,et al.  X-ray, γ-ray and neutron detector development for future space instrumentation $ , 2014 .

[96]  K. Perez Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment , 2014 .

[97]  Freiburg i. Br.,et al.  Zeitschrift für anorganische und allgemeine Chemie , 2012 .

[98]  A. S. Kozyrev,et al.  The Mercury Gamma and Neutron Spectrometer (MGNS) on board the Planetary Orbiter of the BepiColombo mission , 2010 .

[99]  M. Moszynski,et al.  Light yield non-proportionality and intrinsic energy resolution of doped CsI scintillators , 2008 .

[100]  W. Klamraa,et al.  Studies of scintillation light nonproportionality of ZnSe(Te), CsI(Tl) and YAP(Ce) crystals using heavy ions , 2002 .

[101]  Steven W. Smith,et al.  The Scientist and Engineer's Guide to Digital Signal Processing , 1997 .

[102]  P. Dorenbos,et al.  Non-proportionality in the scintillation response and the energy resolution obtainable with scintill , 1995 .

[103]  R. Hill,et al.  The effect on the scintillation efficiency of NaI(Tl) of changes in the thallium concentration and strain: I. Experimental , 1966 .