Sparse Legendre expansions via l1-minimization

We consider the problem of recovering polynomials that are sparse with respect to the basis of Legendre polynomials from a small number of random samples. In particular, we show that a Legendre s-sparse polynomial of maximal degree N can be recovered from [email protected]?slog^4(N) random samples that are chosen independently according to the Chebyshev probability measure [email protected](x)[email protected]^-^1(1-x^2)^-^1^/^2dx. As an efficient recovery method, @?"1-minimization can be used. We establish these results by verifying the restricted isometry property of a preconditioned random Legendre matrix. We then extend these results to a large class of orthogonal polynomial systems, including the Jacobi polynomials, of which the Legendre polynomials are a special case. Finally, we transpose these results into the setting of approximate recovery for functions in certain infinite-dimensional function spaces.

[1]  Aswin C. Sankaranarayanan,et al.  Compressive Sensing , 2008, Computer Vision, A Reference Guide.

[2]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[3]  E. Candès,et al.  Sparsity and incoherence in compressive sampling , 2006, math/0611957.

[4]  Daniel Potts,et al.  Fast algorithms for discrete polynomial transforms on arbitrary grids , 2003 .

[5]  David L. Donoho,et al.  Observed universality of phase transitions in high-dimensional geometry, with implications for modern data analysis and signal processing , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[7]  S. Foucart A note on guaranteed sparse recovery via ℓ1-minimization , 2010 .

[8]  H. Rauhut On the Impossibility of Uniform Sparse Reconstruction using Greedy Methods , 2007 .

[9]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[10]  J. Tropp,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, Commun. ACM.

[11]  D. Donoho,et al.  Counting faces of randomly-projected polytopes when the projection radically lowers dimension , 2006, math/0607364.

[12]  H. Rauhut,et al.  Learning Trigonometric Polynomials from Random Samples and Exponential Inequalities for Eigenvalues of Random Matrices , 2007, math/0701781.

[13]  Dennis M. Healy,et al.  Fast Discrete Polynomial Transforms with Applications to Data Analysis for Distance Transitive Graphs , 1997, SIAM J. Comput..

[14]  J. Fadili,et al.  CMB data analysis and sparsity , 2008, 0804.1295.

[15]  Rachel Ward,et al.  On the Complexity of Mumford–Shah-Type Regularization, Viewed as a Relaxed Sparsity Constraint , 2010, IEEE Transactions on Image Processing.

[16]  Radu Berinde,et al.  Advances in sparse signal recovery methods , 2009 .

[17]  Holger Rauhut,et al.  Compressive Sensing with structured random matrices , 2012 .

[18]  Pierre Vandergheynst,et al.  Dictionary Preconditioning for Greedy Algorithms , 2008, IEEE Transactions on Signal Processing.

[19]  Mark Tygert,et al.  Fast algorithms for spherical harmonic expansions, II , 2008, J. Comput. Phys..

[20]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[21]  Sean S. B. Moore,et al.  FFTs for the 2-Sphere-Improvements and Variations , 1996 .

[22]  George E. Andrews,et al.  Special Functions: Partitions , 1999 .

[23]  R. DeVore,et al.  Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs , 2010 .

[24]  Mark Tygert,et al.  Fast Algorithms for Spherical Harmonic Expansions , 2006, SIAM J. Sci. Comput..

[25]  Pierre Vandergheynst,et al.  Compressed Sensing and Redundant Dictionaries , 2007, IEEE Transactions on Information Theory.

[26]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[27]  Houman Owhadi,et al.  A non-adapted sparse approximation of PDEs with stochastic inputs , 2010, J. Comput. Phys..

[28]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[29]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[30]  H. Rauhut Random Sampling of Sparse Trigonometric Polynomials , 2005, math/0512642.

[31]  M. Rudelson,et al.  On sparse reconstruction from Fourier and Gaussian measurements , 2008 .

[32]  R. DeVore,et al.  ANALYTIC REGULARITY AND POLYNOMIAL APPROXIMATION OF PARAMETRIC AND STOCHASTIC ELLIPTIC PDE'S , 2011 .

[33]  G. Szegő Zeros of orthogonal polynomials , 1939 .

[34]  Emmanuel J. Cand The Restricted Isometry Property and Its Implications for Compressed Sensing , 2008 .

[35]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[36]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[37]  R. DeVore,et al.  Compressed sensing and best k-term approximation , 2008 .

[38]  H. Rauhut,et al.  Sparse recovery for spherical harmonic expansions , 2011, 1102.4097.

[39]  Massimo Fornasier,et al.  Compressive Sensing and Structured Random Matrices , 2010 .

[40]  Lie Wang,et al.  New Bounds for Restricted Isometry Constants , 2009, IEEE Transactions on Information Theory.

[41]  Song Li,et al.  New bounds on the restricted isometry constant δ2k , 2011 .

[42]  Gabriele Steidl,et al.  Fast algorithms for discrete polynomial transforms , 1998, Math. Comput..

[43]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[44]  S. Foucart,et al.  Sparsest solutions of underdetermined linear systems via ℓq-minimization for 0 , 2009 .

[45]  Holger Rauhut,et al.  The Gelfand widths of lp-balls for 0p<=1 , 2010, J. Complex..

[46]  S. Mallat,et al.  Adaptive greedy approximations , 1997 .

[47]  Holger Rauhut,et al.  The Gelfand widths of ℓp-balls for 0 , 2010, ArXiv.