Onset of inflation in loop quantum cosmology

Using a Liouville measure, similar to the one proposed recently by Gibbons and Turok, we investigate the probability that single-field inflation with a polynomial potential can last long enough to solve the shortcomings of the standard hot big bang model, within the semiclassical regime of loop quantum cosmology. We conclude that, for such a class of inflationary models and for natural values of the loop quantum cosmology parameters, a successful inflationary scenario is highly improbable.

[1]  A. Kehagias,et al.  The cosmological slingshot scenario: a stringy early times universe , 2006, hep-th/0611246.

[2]  G. W. Gibbons,et al.  Measure problem in cosmology , 2006, hep-th/0609095.

[3]  J. Tambornino,et al.  Gauge-invariant perturbations around symmetry-reduced sectors of general relativity: applications to cosmology , 2007, gr-qc/0702093.

[4]  A. Ashtekar,et al.  Loop quantum cosmology of k = 1 FRW models , 2006, gr-qc/0612104.

[5]  C. Germani United Nations Educational, Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS A STRINGY ALTERNATIVE TO INFLATION: THE COSMOLOGICAL SLINGSHOT SCENARIO , 2006 .

[6]  Parampreet Singh,et al.  Formation and evolution of structure in loop cosmology. , 2006, Physical review letters.

[7]  M. Bojowald Loop quantum cosmology and inhomogeneities , 2006, gr-qc/0609034.

[8]  A. Ashtekar,et al.  Quantum Nature of the Big Bang: Improved dynamics , 2006, gr-qc/0607039.

[9]  Gregory V. Vereshchagin,et al.  Nonsingular bouncing universes in loop quantum cosmology , 2006, gr-qc/0606032.

[10]  Jérôme Martin,et al.  Inflation after Wmap3: Confronting the Slow-roll and Exact Power Spectra to Cmb Data , 2006 .

[11]  R. Brandenberger,et al.  The confining heterotic brane gas: a non-inflationary solution to the entropy and horizon problems of standard cosmology , 2005, hep-th/0511299.

[12]  M. Bojowald Loop Quantum Cosmology , 2008, Living reviews in relativity.

[13]  K. Vandersloot Hamiltonian constraint of loop quantum cosmology , 2005, gr-qc/0502082.

[14]  Pune,et al.  Inflationary Cosmology and Quantization Ambiguities in Semi-Classical Loop Quantum Gravity , 2004, gr-qc/0403106.

[15]  R. Maartens,et al.  Loop quantum gravity effects on inflation and the CMB , 2003, astro-ph/0311015.

[16]  G. Ellis,et al.  Multiverses and physical cosmology , 2003, astro-ph/0305292.

[17]  A. Ashtekar,et al.  Mathematical structure of loop quantum cosmology , 2003, gr-qc/0304074.

[18]  E. Álvarez,et al.  Quantum Gravity , 2004, gr-qc/0405107.

[19]  T. Thiemann,et al.  Lectures on Loop Quantum Gravity , 2002, gr-qc/0210094.

[20]  Paul J. Steinhardt,et al.  A Cyclic Model of the Universe , 2001, Science.

[21]  Calzetta,et al.  Semiclassical effects and the onset of inflation. , 1992, Physical review. D, Particles and fields.

[22]  Calzetta,et al.  Inflation in inhomogeneous cosmology. , 1992, Physical review. D, Particles and fields.

[23]  Goldwirth Inhomogeneous initial conditions for inflation. , 1991, Physical review. D, Particles and fields.

[24]  S. Hawking,et al.  How probable is inflation , 1988 .

[25]  S. Hawking,et al.  A natural measure on the set of all universes , 1987 .

[26]  T. Piran On general conditions for inflation , 1986 .

[27]  Andrei Linde,et al.  A new inflationary universe scenario: A possible solution of the horizon , 1982 .

[28]  A. Guth Inflationary universe: A possible solution to the horizon and flatness problems , 1981 .