Cytosolic pH regulates proliferation and tumour growth by promoting expression of cyclin D1

[1]  Reinhard Dechant,et al.  Another Consequence of the Warburg Effect? Metabolic Regulation of Na+/H+ Exchangers May Link Aerobic Glycolysis to Cell Growth , 2020, Frontiers in Oncology.

[2]  H. Freeze,et al.  Golgi Acidification by NHE7 Regulates Cytosolic pH Homeostasis in Pancreatic Cancer Cells. , 2020, Cancer discovery.

[3]  I. Novak,et al.  Proton Pump Inhibitors Reduce Pancreatic Adenocarcinoma Progression by Selectively Targeting H+, K+-ATPases in Pancreatic Cancer and Stellate Cells , 2020, Cancers.

[4]  C. Borchers,et al.  pH Biosensing by PI4P Regulates Cargo Sorting at the TGN. , 2020, Developmental cell.

[5]  S. Sivasubbu,et al.  pH‐controlled histone acetylation amplifies melanocyte differentiation downstream of MITF , 2019, EMBO reports.

[6]  A. Churg,et al.  Cyclin D1 immunohistochemical staining to separate benign from malignant mesothelial proliferations , 2019, Modern Pathology.

[7]  C. Thompson,et al.  Metabolic regulation of cell growth and proliferation , 2019, Nature Reviews Molecular Cell Biology.

[8]  Jun Sese,et al.  ChIP‐Atlas: a data‐mining suite powered by full integration of public ChIP‐seq data , 2018, EMBO reports.

[9]  D. Barber,et al.  β-Catenin is a pH sensor with decreased stability at higher intracellular pH , 2018, The Journal of cell biology.

[10]  R. Stahel,et al.  Gemcitabine Synergizes with Immune Checkpoint Inhibitors and Overcomes Resistance in a Preclinical Model and Mesothelioma Patients , 2018, Clinical Cancer Research.

[11]  S. Pedersen,et al.  Roles of pH in control of cell proliferation , 2018, Acta physiologica.

[12]  M. Peter,et al.  The multi-subunit GID/CTLH E3 ubiquitin ligase promotes cell proliferation and targets the transcription factor Hbp1 for degradation , 2018, eLife.

[13]  T. Koltai,et al.  Curing cancer? Further along the new pH-centric road and paradigm , 2018, Oncoscience.

[14]  Min Huang,et al.  Targeting ERK, an Achilles' Heel of the MAPK pathway, in cancer therapy , 2018, Acta pharmaceutica Sinica. B.

[15]  J. Skotheim,et al.  A Precise Cdk Activity Threshold Determines Passage through the Restriction Point. , 2018, Molecular cell.

[16]  N. Puig,et al.  Amiloride, An Old Diuretic Drug, Is a Potential Therapeutic Agent for Multiple Myeloma , 2017, Clinical Cancer Research.

[17]  N. Sobhani,et al.  Cyclin dependent kinase 4 and 6 inhibitors as novel therapeutic agents for targeted treatment of malignant mesothelioma , 2017, Genes & cancer.

[18]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[19]  R. Radhakrishnan,et al.  pH Gradient Reversal: An Emerging Hallmark of Cancers. , 2015, Recent patents on anti-cancer drug discovery.

[20]  M. Meyerson,et al.  Whole-exome sequencing reveals frequent genetic alterations in BAP1, NF2, CDKN2A, and CUL1 in malignant pleural mesothelioma. , 2015, Cancer research.

[21]  C. Proud,et al.  mTORC1 signaling controls multiple steps in ribosome biogenesis. , 2014, Seminars in cell & developmental biology.

[22]  M. Peter,et al.  Cytosolic pH regulates cell growth through distinct GTPases, Arf1 and Gtr1, to promote Ras/PKA and TORC1 activity. , 2014, Molecular cell.

[23]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[24]  A. Harris,et al.  The chemistry, physiology and pathology of pH in cancer , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[25]  Andrew C. Wood,et al.  Dual CDK4/CDK6 Inhibition Induces Cell-Cycle Arrest and Senescence in Neuroblastoma , 2013, Clinical Cancer Research.

[26]  P. Ye,et al.  CREB participates in the IGF‐I‐stimulation cyclin D1 transcription , 2013, Developmental neurobiology.

[27]  A. Snowman,et al.  Inositol Polyphosphate Multikinase Is a Coactivator of p53-Mediated Transcription and Cell Death , 2013, Science Signaling.

[28]  Benjamin E. Gross,et al.  Integrative Analysis of Complex Cancer Genomics and Clinical Profiles Using the cBioPortal , 2013, Science Signaling.

[29]  L. Fliegel,et al.  Regulation of the Na+/H+ Exchanger (NHE1) in Breast Cancer Metastasis. , 2013, Cancer research.

[30]  Benjamin E. Gross,et al.  The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. , 2012, Cancer discovery.

[31]  Adam A. Margolin,et al.  The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity , 2012, Nature.

[32]  Stanley Brul,et al.  Intracellular pH is a tightly controlled signal in yeast. , 2011, Biochimica et biophysica acta.

[33]  Matthew P. Jacobson,et al.  Dysregulated pH: a perfect storm for cancer progression , 2011, Nature Reviews Cancer.

[34]  Li-Rong Yu,et al.  Distinct roles of GCN5/PCAF‐mediated H3K9ac and CBP/p300‐mediated H3K18/27ac in nuclear receptor transactivation , 2011, The EMBO journal.

[35]  Maciej Śmiechowski Theoretical pKa prediction of O-phosphoserine in aqueous solution , 2010 .

[36]  D. A. Foster,et al.  Regulation of G1 Cell Cycle Progression: Distinguishing the Restriction Point from a Nutrient-Sensing Cell Growth Checkpoint(s). , 2010, Genes & cancer.

[37]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[38]  L. Cantley,et al.  Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation , 2009, Science.

[39]  David A. Frank,et al.  CREB in the Pathophysiology of Cancer: Implications for Targeting Transcription Factors for Cancer Therapy , 2009, Clinical Cancer Research.

[40]  Jérôme Eeckhoute,et al.  A cell-type-specific transcriptional network required for estrogen regulation of cyclin D1 and cell cycle progression in breast cancer. , 2006, Genes & development.

[41]  Y. Aelony,et al.  Prognostic Value of Pleural Fluid pH in Malignant Epithelial Mesothelioma after Talc Poudrage , 2006, Respiration.

[42]  P. Cullen,et al.  Coincidence detection in phosphoinositide signaling. , 2005, Trends in cell biology.

[43]  N. L. La Thangue,et al.  p300/CBP proteins: HATs for transcriptional bridges and scaffolds. , 2001, Journal of cell science.

[44]  R. Goodman,et al.  CREB-binding Protein and p300 in Transcriptional Regulation* , 2001, The Journal of Biological Chemistry.

[45]  J. Craig,et al.  Recruitment of CREB Binding Protein Is Sufficient for CREB-Mediated Gene Activation , 2000, Molecular and Cellular Biology.

[46]  H. Dyson,et al.  Structural analyses of CREB-CBP transcriptional activator-coactivator complexes by NMR spectroscopy: implications for mapping the boundaries of structural domains. , 1999, Journal of molecular biology.

[47]  Frank McCormick,et al.  β-Catenin regulates expression of cyclin D1 in colon carcinoma cells , 1999, Nature.

[48]  H. Shih,et al.  A positive genetic selection for disrupting protein-protein interactions: identification of CREB mutations that prevent association with the coactivator CBP. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[49]  F. Portillo,et al.  Transformation and pH homeostasis of fibroblasts expressing yeast H(+)-ATPase containing site-directed mutations , 1990, Molecular and cellular biology.

[50]  R. Serrano,et al.  Increased pH and tumorigenicity of fibroblasts expressing a yeast proton pump , 1988, Nature.

[51]  S. Aaronson,et al.  Microinjection of ras p21 induces a rapid rise in intracellular pH , 1987, Molecular and cellular biology.

[52]  C. Sardet,et al.  A specific mutation abolishing Na+/H+ antiport activity in hamster fibroblasts precludes growth at neutral and acidic pH. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Jacob D. Jaffe,et al.  Next-generation characterization of the Cancer Cell Line Encyclopedia , 2019, Nature.

[54]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[55]  R. Deberardinis,et al.  The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. , 2008, Cell metabolism.

[56]  M. Karmazyn,et al.  The Sodium-Hydrogen Exchanger , 2003, Springer US.

[57]  M. Karmazyn,et al.  The Sodium-Hydrogen Exchanger: From Molecule to its Role in Disease , 2003 .

[58]  W. Moolenaar Effects of growth factors on intracellular pH regulation. , 1986, Annual review of physiology.