Investigation of wet steam flow in a 300 MW direct air-cooling steam turbine. Part 1: Measurement principles, probe, and wetness

Abstract The direct air-cooling steam turbines have been operated more and more in the north of China. The backpressure of a turbine is affected easily with weather and varies very often in a short time. The variation of backpressure in a larger range from about 10 to 60 kPa causes many problems in design and operation of the turbine. To study the properties of the wet steam flow in the low pressure direct air-cooling steam turbine, an optical—pneumatic probe was developed based on the multi-wavelength light extinction and four-hole wedge probe. Measurements with this probe in a 300 MW direct air-cooling turbine were carried out. The measured local wetness, total wetness of exhaust steam, size distribution of fine droplets, and their profiles along the blade height are presented. The measured cylinder efficiency and total wetness agree well with the results obtained by the thermal performance tests.