Modeling Organochlorine Compounds and the σ-Hole Effect Using a Polarizable Multipole Force Field

The charge distribution of halogen atoms on organochlorine compounds can be highly anisotropic and even display a so-called σ-hole, which leads to strong halogen bonds with electron donors. In this paper, we have systematically investigated a series of chloromethanes with one to four chloro substituents using a polarizable multipole-based molecular mechanics model. The atomic multipoles accurately reproduced the ab initio electrostatic potential around chloromethanes, including CCl4, which has a prominent σ-hole on the Cl atom. The van der Waals parameters for Cl were fitted to the experimental density and heat of vaporization. The calculated hydration free energy, solvent reaction fields, and interaction energies of several homo- and heterodimer of chloromethanes are in good agreement with experimental and ab initio data. This study suggests that sophisticated electrostatic models, such as polarizable atomic multipoles, are needed for accurate description of electrostatics in organochlorine compounds and halogen bonds, although further improvement is necessary for better transferability.

[1]  M. Alderton,et al.  Distributed multipole analysis , 2006 .

[2]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[3]  David L Mobley,et al.  Small molecule hydration free energies in explicit solvent: An extensive test of fixed-charge atomistic simulations. , 2009, Journal of chemical theory and computation.

[4]  B. Berne,et al.  Combined fluctuating charge and polarizable dipole models: Application to a five-site water potential function , 2001 .

[5]  Alexander D. MacKerell,et al.  Polarizable empirical force field for aromatic compounds based on the classical drude oscillator. , 2007, The journal of physical chemistry. B.

[6]  K. Jordan,et al.  Molecular dynamics simulations of methane hydrate using polarizable force fields. , 2007, The journal of physical chemistry. B.

[7]  Reizo Kato,et al.  Synthesis and physical properties of (DIETS)2[Au(CN)4]: A new θ-salt with a unique donor⋯anion network , 2001 .

[8]  Yue Shi,et al.  Multipole electrostatics in hydration free energy calculations , 2011, J. Comput. Chem..

[9]  Nohad Gresh,et al.  Improved Formulas for the Calculation of the Electrostatic Contribution to the Intermolecular Interaction Energy from Multipolar Expansion of the Electronic Distribution. , 2003, The journal of physical chemistry. A.

[10]  H. Sawa,et al.  Novel radical cation salts of organic π-donors containing iodine atom(s): the first application of strong intermolecular-I···X-(X = CN, halogen atom) interaction to molecular conductors , 1995 .

[11]  Charles H. Bennett,et al.  Efficient estimation of free energy differences from Monte Carlo data , 1976 .

[12]  Weiliang Zhu,et al.  Halogen Bond: Its Role beyond Drug-Target Binding Affinity for Drug Discovery and Development , 2014, J. Chem. Inf. Model..

[13]  J. Choi,et al.  Vibrational solvatochromism and electrochromism of infrared probe molecules containing C≡O, C≡N, C=O, or C-F vibrational chromophore. , 2011, The Journal of chemical physics.

[14]  Timothy Clark,et al.  Halogen bonding and other σ-hole interactions: a perspective. , 2013, Physical chemistry chemical physics : PCCP.

[15]  Hiroshi Yamamoto,et al.  An application of supramolecular chemistry to molecular conductors , 2002 .

[16]  A. Voth Macromolecular halogen bonds , 2007 .

[17]  Guohui Li,et al.  Trypsin‐ligand binding free energies from explicit and implicit solvent simulations with polarizable potential , 2009, J. Comput. Chem..

[18]  Jindřich Fanfrlík,et al.  Halogen bond tunability II: the varying roles of electrostatic and dispersion contributions to attraction in halogen bonds , 2013, Journal of Molecular Modeling.

[19]  Patric Schyman,et al.  Treatment of Halogen Bonding in the OPLS-AA Force Field; Application to Potent Anti-HIV Agents. , 2012, Journal of chemical theory and computation.

[20]  Pengyu Ren,et al.  Probing the effect of conformational constraint on phosphorylated ligand binding to an SH2 domain using polarizable force field simulations. , 2012, The journal of physical chemistry. B.

[21]  Pierangelo Metrangolo,et al.  Halogen Bonding in Halocarbon—Protein Complexes: A Structural Survey , 2011 .

[22]  Timothy Clark,et al.  Halogen bonding: an electrostatically-driven highly directional noncovalent interaction. , 2010, Physical chemistry chemical physics : PCCP.

[23]  Pierangelo Metrangolo,et al.  Fluorine-Centered Halogen Bonding: A Factor in Recognition Phenomena and Reactivity , 2011 .

[24]  Pengyu Y. Ren,et al.  Consistent treatment of inter‐ and intramolecular polarization in molecular mechanics calculations , 2002, J. Comput. Chem..

[25]  Nathan A. Baker,et al.  Biomolecular electrostatics and solvation: a computational perspective , 2012, Quarterly Reviews of Biophysics.

[26]  Martin Lepšík,et al.  Modulation of aldose reductase inhibition by halogen bond tuning. , 2013, ACS chemical biology.

[27]  Jean-Philip Piquemal,et al.  Polarizable molecular dynamics simulation of Zn(II) in water using the AMOEBA force field. , 2010, Journal of Chemical Theory and Computation.

[28]  Pavel Hobza,et al.  On Extension of the Current Biomolecular Empirical Force Field for the Description of Halogen Bonds. , 2012, Journal of chemical theory and computation.

[29]  S. Lifson,et al.  Energy functions for peptides and proteins. I. Derivation of a consistent force field including the hydrogen bond from amide crystals. , 1974, Journal of the American Chemical Society.

[30]  Pengyu Ren,et al.  Automation of AMOEBA polarizable force field parameterization for small molecules , 2012, Theoretical Chemistry Accounts.

[31]  Alan Grossfield,et al.  Simulation of Ca2+ and Mg2+ solvation using polarizable atomic multipole potential. , 2006, The journal of physical chemistry. B.

[32]  Pierangelo Metrangolo,et al.  The fluorine atom as a halogen bond donor, viz. a positive site , 2011 .

[33]  Peter Politzer,et al.  Halogen bonding: an interim discussion. , 2013, Chemphyschem : a European journal of chemical physics and physical chemistry.

[34]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[35]  George A. Kaminski,et al.  Development of an Accurate and Robust Polarizable Molecular Mechanics Force Field from ab Initio Quantum Chemistry , 2004 .

[36]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[37]  Pengyu Y. Ren,et al.  Towards accurate solvation dynamics of divalent cations in water using the polarizable amoeba force field: From energetics to structure. , 2006, The Journal of chemical physics.

[38]  K. Sharp,et al.  Accurate Calculation of Hydration Free Energies Using Macroscopic Solvent Models , 1994 .

[39]  Eric Westhof,et al.  Halogen bonds in biological molecules. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Pengyu Y. Ren,et al.  Calculations of the electric fields in liquid solutions. , 2013, The journal of physical chemistry. B.

[41]  Nohad Gresh,et al.  Could an anisotropic molecular mechanics/dynamics potential account for sigma hole effects in the complexes of halogenated compounds? , 2013, J. Comput. Chem..

[42]  Jindřich Fanfrlík,et al.  Halogen bond tunability I: the effects of aromatic fluorine substitution on the strengths of halogen-bonding interactions involving chlorine, bromine, and iodine , 2011, Journal of molecular modeling.

[43]  Stephen H Hughes,et al.  Examination of halogen substituent effects on HIV-1 integrase inhibitors derived from 2,3-dihydro-6,7-dihydroxy-1H-isoindol-1-ones and 4,5-dihydroxy-1H-isoindole-1,3(2H)-diones. , 2009, Bioorganic & medicinal chemistry letters.

[44]  Peter Politzer,et al.  σ‐Hole bonding and hydrogen bonding: Competitive interactions , 2007 .

[45]  Maurizio Sironi,et al.  Halogen bonding in ligand-receptor systems in the framework of classical force fields. , 2011, Physical chemistry chemical physics : PCCP.

[46]  Arnold T. Hagler,et al.  New combining rules for rare gas van der waals parameters , 1993, J. Comput. Chem..

[47]  William L. Jorgensen,et al.  Free Energies of Hydration and Pure Liquid Properties of Hydrocarbons from the OPLS All-Atom Model , 1994 .

[48]  Pengyu Y. Ren,et al.  The Polarizable Atomic Multipole-based AMOEBA Force Field for Proteins. , 2013, Journal of chemical theory and computation.

[49]  T. Windus,et al.  O + C2H4 potential energy surface: lowest-lying singlet at the multireference level , 2012, Theoretical Chemistry Accounts.

[50]  R. Bryce,et al.  Accounting for non-optimal interactions in molecular recognition: a study of ion-π complexes using a QM/MM model with a dipole-polarisable MM region. , 2011, Physical chemistry chemical physics : PCCP.

[51]  Wei Yang,et al.  Modeling Structural Coordination and Ligand Binding in Zinc Proteins with a Polarizable Potential. , 2012, Journal of chemical theory and computation.

[52]  David A. Rockstraw,et al.  A generating equation for mixing rules and two new mixing rules for interatomic potential energy parameters , 2004, J. Comput. Chem..

[53]  Pengyu Y. Ren,et al.  Calculation of protein–ligand binding free energy by using a polarizable potential , 2008, Proceedings of the National Academy of Sciences.

[54]  R. Dreisbach Physical Properties of Chemical Compounds , 1955 .

[55]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[56]  Margaret E. Johnson,et al.  Current status of the AMOEBA polarizable force field. , 2010, The journal of physical chemistry. B.

[57]  Pengyu Y. Ren,et al.  Polarizable Atomic Multipole-based Molecular Mechanics for Organic Molecules. , 2011, Journal of chemical theory and computation.

[58]  Timothy Clark,et al.  Halogen bonding: the σ-hole , 2007 .

[59]  Lili Wang,et al.  A polarizable ellipsoidal force field for halogen bonds , 2013, J. Comput. Chem..

[60]  Mahmoud A. A. Ibrahim,et al.  Molecular mechanical study of halogen bonding in drug discovery , 2011, J. Comput. Chem..

[61]  Michael H. Abraham,et al.  Thermodynamics of solute transfer from water to hexadecane , 1990 .

[62]  S. Boxer,et al.  Measuring electrostatic fields in both hydrogen-bonding and non-hydrogen-bonding environments using carbonyl vibrational probes. , 2013, Journal of the American Chemical Society.

[63]  P. Metrangolo,et al.  Halogen Versus Hydrogen , 2008, Science.

[64]  David L Mobley,et al.  Comparison of charge models for fixed-charge force fields: small-molecule hydration free energies in explicit solvent. , 2007, The journal of physical chemistry. B.

[65]  William L Jorgensen,et al.  Computationally-guided optimization of a docking hit to yield catechol diethers as potent anti-HIV agents. , 2011, Journal of medicinal chemistry.

[66]  Pavel Hobza,et al.  Plugging the explicit σ-holes in molecular docking. , 2013, Chemical communications.

[67]  Irwin D Kuntz,et al.  Estimation of Absolute Free Energies of Hydration Using Continuum Methods: Accuracy of Partial Charge Models and Optimization of Nonpolar Contributions , 2022 .

[68]  W. L. Jorgensen,et al.  A priori calculations of pKa's for organic compounds in water. The pKa of ethane , 1987 .

[69]  Pengyu Y. Ren,et al.  Polarizable Atomic Multipole Water Model for Molecular Mechanics Simulation , 2003 .

[70]  H. V. Kehiaian,et al.  Enthalpies of vaporization of organic compounds : a critical review and data compilation , 1985 .

[71]  Bernd Engels,et al.  Accurate Intermolecular Potentials with Physically Grounded Electrostatics. , 2011, Journal of chemical theory and computation.

[72]  P Shing Ho,et al.  Directing macromolecular conformation through halogen bonds , 2007, Proceedings of the National Academy of Sciences.

[73]  Peter Politzer,et al.  σ-hole bonding between like atoms; a fallacy of atomic charges , 2008, Journal of molecular modeling.

[74]  T. Darden,et al.  Simple Formulas for Improved Point-Charge Electrostatics in Classical Force Fields and Hybrid Quantum Mechanical/Molecular Mechanical Embedding. , 2008, International journal of quantum chemistry.

[75]  Pengyu Y. Ren,et al.  Systematic improvement of a classical molecular model of water. , 2013, The journal of physical chemistry. B.

[76]  S. Boxer,et al.  Stark realities. , 2009, The journal of physical chemistry. B.

[77]  Timothy Clark,et al.  Polarization-induced σ-holes and hydrogen bonding , 2012, Journal of Molecular Modeling.

[78]  Pierangelo Metrangolo,et al.  Halogen bonding in halocarbon-protein complexes: a structural survey. , 2011, Chemical Society reviews.

[79]  Lee-Ping Wang,et al.  Systematic Parametrization of Polarizable Force Fields from Quantum Chemistry Data. , 2013, Journal of chemical theory and computation.

[80]  F. Rossini Physical Properties of Chemical Compounds III. Advances in Chemistry Series Number 29. , 1962 .

[81]  Arnold Weissberger,et al.  Organic solvents;: Physical properties and methods of purification , 1970 .

[82]  M. Scholfield,et al.  Halogen bonding (X‐bonding): A biological perspective , 2013, Protein science : a publication of the Protein Society.

[83]  Pengyu Y. Ren,et al.  Ion solvation thermodynamics from simulation with a polarizable force field. , 2003, Journal of the American Chemical Society.

[84]  Jirí Cerný,et al.  Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. , 2006, Physical chemistry chemical physics : PCCP.

[85]  J. Murray,et al.  Enthalpy and entropy factors in gas phase halogen bonding: compensation and competition , 2013 .

[86]  Markus O. Zimmermann,et al.  Halogen-Enriched Fragment Libraries as Leads for Drug Rescue of Mutant p53 , 2012, Journal of the American Chemical Society.