The crystal structure of magnesiozippeite, Mg[(UO2)2O2(SO4)](H2O)3.5, from East Saddle Mine, San Juan County, Utah (U.S.A.)

[1]  V. Petříček,et al.  Crystallographic Computing System JANA2006: General features , 2014 .

[2]  F. Veselovský,et al.  Crystal structure of pseudojohannite, with a revised formula, Cu3(OH)2[(UO2)4O4(SO4)2](H2O)12 , 2012 .

[3]  S. Krivovichev,et al.  New nickel-uranium-arsenic mineral species from the oxidation zone of the Belorechenskoye deposit, Northern Caucasus, Russia: I. Rauchite, Ni(UO2)2(AsO4)2·10H2O, a member of the autunite group , 2012 .

[4]  M. Dušek,et al.  THE CRYSTAL STRUCTURE OF NATURAL ZIPPEITE, K1.85H+0.15[(UO2)4O2(SO4)2(OH)2](H2O)4, FROM JÁCHYMOV, CZECH REPUBLIC , 2011 .

[5]  I. Císařová,et al.  Sejkoraite-(Y), a new member of the zippeite group containing trivalent cations from Jáchymov (St. Joachimsthal), Czech Republic: Description and crystal structure refinement , 2011 .

[6]  Franti,et al.  METARAUCHITE, Ni(UO2)2(AsO4)2·8H2O, FROM JÁCHYMOV, CZECH REPUBLIC, AND SCHNEEBERG, GERMANY: A NEW MEMBER OF THE AUTUNITE GROUP , 2010 .

[7]  Fujio Izumi,et al.  VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .

[8]  M. Schindler,et al.  THE STEREOCHEMISTRY AND CHEMICAL COMPOSITION OF INTERSTITIAL COMPLEXES IN URANYL-OXYSALT MINERALS , 2008 .

[9]  N. Blaton,et al.  THE CRYSTAL STRUCTURES OF SYNTHETIC POTASSIUM – TRANSITION-METAL ZIPPEITE-GROUP PHASES , 2008 .

[10]  Gervais Chapuis,et al.  SUPERFLIP– a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions , 2007 .

[11]  Yohey Suzuki,et al.  Dehydration processes in the meta-autunite group minerals meta-autunite, metasaléeite, and metatorbernite , 2005 .

[12]  P. Burns,et al.  DIVALENT TRANSITION METALS AND MAGNESIUM IN STRUCTURES THAT CONTAIN THE AUTUNITE-TYPE SHEET , 2004 .

[13]  P. Burns,et al.  MONOVALENT CATIONS IN STRUCTURES OF THE META-AUTUNITE GROUP , 2004 .

[14]  P. Burns,et al.  Contribution to the mineralogy of acid drainage of Uranium minerals: Marecottite and the zippeite-group , 2003 .

[15]  P. Burns,et al.  THE CRYSTAL CHEMISTRY OF THE ZIPPEITE GROUP , 2002 .

[16]  I. Brown,et al.  The Chemical Bond in Inorganic Chemistry: The Bond Valence Model , 2002 .

[17]  R. Ewing,et al.  The crystal chemistry of hexavalent uranium; polyhedron geometries, bond-valence parameters, and polymerization of polyhedra , 1997 .

[18]  J. S. Reid,et al.  The Analytical Calculation of Absorption in Multifaceted Crystals , 1995 .

[19]  N. Blaton,et al.  The structure and physicochemical characteristics of synthetic zippeite , 1995 .

[20]  I. Brown The bond valence model , 1993 .

[21]  I. D. Brown,et al.  Bond‐valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database , 1985 .

[22]  V. Spitsyn,et al.  Structure of the basic uranyl salts and polyuranates , 1982 .

[23]  P. A. Williams,et al.  The aqueous chemistry of uranium minerals. Part 2. Minerals of the liebigite group , 1980, Mineralogical Magazine.

[24]  P. A. Williams,et al.  The aqueous chemistry of uranium minerals. Part I. Divalent cation zippeïte , 1979, Mineralogical Magazine.

[25]  C. Frondel,et al.  MINERALOGY OF THE ZIPPEITE GROUP , 1976 .

[26]  G. V. Gibbs,et al.  Quadratic Elongation: A Quantitative Measure of Distortion in Coordination Polyhedra , 1971, Science.

[27]  J. Manson The Chemical Bond in Inorganic Chemistry: the Valence Bond Model By I. David Brown (McMaster University). Oxford University Press: New York. 2002. xii +278 pp. $130.00. ISBN 0-19-850870-0. , 2002 .

[28]  D. R.,et al.  Empirical Bond-Strength-Bond-Length Curves for Oxides , 2001 .

[29]  R. Hoppe Effective coordination numbers (ECoN) and mean fictive ionic radii (MEFIR) , 1979 .

[30]  R. Hoppe Effective coordination numbers (ECoN) and mean Active fictive ionic radii (MEFIR)[1,2]* , 1979 .