Cahn--Hilliard Inpainting and a Generalization for Grayvalue Images

The Cahn-Hilliard equation is a nonlinear fourth order diffusion equation originating in material science for modeling phase separation and phase coarsening in binary alloys. The inpainting of binary images using the Cahn-Hilliard equation is a new approach in image processing. In this paper we discuss the stationary state of the proposed model and introduce a generalization for grayvalue images of bounded variation. This is realized by using subgradients of the total variation functional within the flow, which leads to structure inpainting with smooth curvature of level sets.

[1]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[2]  Lin He,et al.  Error estimation for Bregman iterations and inverse scale space methods in image restoration , 2007, Computing.

[3]  S. Osher,et al.  Convergence rates of convex variational regularization , 2004 .

[4]  Gianni Dal Maso,et al.  An Introduction to [gamma]-convergence , 1993 .

[5]  Jianhong Shen,et al.  Digital inpainting based on the Mumford–Shah–Euler image model , 2002, European Journal of Applied Mathematics.

[6]  Stanley Osher,et al.  Modeling Textures with Total Variation Minimization and Oscillating Patterns in Image Processing , 2003, J. Sci. Comput..

[7]  Xue-Cheng Tai,et al.  Iterative Image Restoration Combining Total Variation Minimization and a Second-Order Functional , 2005, International Journal of Computer Vision.

[8]  Olaf Steinbach,et al.  Numerische Näherungsverfahren für elliptische Randwertprobleme , 2003 .

[9]  Tony F. Chan,et al.  Mathematical Models for Local Nontexture Inpaintings , 2002, SIAM J. Appl. Math..

[10]  S. Osher,et al.  Nonlinear regularizations of TV based PDEs for image processing , 2004 .

[11]  Pierre Kornprobst,et al.  Mathematical problems in image processing - partial differential equations and the calculus of variations , 2010, Applied mathematical sciences.

[12]  Stanley Osher,et al.  Image Decomposition and Restoration Using Total Variation Minimization and the H1 , 2003, Multiscale Model. Simul..

[13]  Yves Meyer,et al.  Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures , 2001 .

[14]  Anthony J. Yezzi,et al.  Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification , 2001, IEEE Trans. Image Process..

[15]  Tony F. Chan,et al.  Error Analysis for Image Inpainting , 2006, Journal of Mathematical Imaging and Vision.

[16]  Andrea L. Bertozzi,et al.  Inpainting of Binary Images Using the Cahn–Hilliard Equation , 2007, IEEE Transactions on Image Processing.

[17]  C. Vogel,et al.  Analysis of bounded variation penalty methods for ill-posed problems , 1994 .

[18]  A. Bertozzi,et al.  Unconditionally stable schemes for higher order inpainting , 2011 .

[19]  L. Ambrosio,et al.  Functions of Bounded Variation and Free Discontinuity Problems , 2000 .

[20]  I. Daubechies,et al.  Iteratively solving linear inverse problems under general convex constraints , 2007 .

[21]  Tony F. Chan,et al.  Euler's Elastica and Curvature-Based Inpainting , 2003, SIAM J. Appl. Math..

[22]  Andrea L. Bertozzi,et al.  Analysis of a Two-Scale Cahn-Hilliard Model for Binary Image Inpainting , 2007, Multiscale Model. Simul..

[23]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[24]  G. D. Maso,et al.  An Introduction to-convergence , 1993 .

[25]  Jean-Michel Morel,et al.  Level lines based disocclusion , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[26]  J. Morel,et al.  An axiomatic approach to image interpolation. , 1998, IEEE transactions on image processing : a publication of the IEEE Signal Processing Society.

[27]  D. J. Eyre,et al.  An Unconditionally Stable One-Step Scheme for Gradient Systems , 1997 .

[28]  Tony F. Chan,et al.  Nontexture Inpainting by Curvature-Driven Diffusions , 2001, J. Vis. Commun. Image Represent..

[29]  S. Osher,et al.  IMAGE DECOMPOSITION AND RESTORATION USING TOTAL VARIATION MINIMIZATION AND THE H−1 NORM∗ , 2002 .

[30]  Tony F. Chan,et al.  Variational Restoration of Nonflat Image Features: Models and Algorithms , 2001, SIAM J. Appl. Math..

[31]  Frank H. Clarks Convex Analysis and Variational Problems (Ivar Ekeland and Roger Temam) , 1978 .

[32]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[33]  Tony F. Chan,et al.  Non-texture inpainting by curvature-driven diffusions (CDD) , 2001 .

[34]  Chen,et al.  MULTIGRID METHOD FOR A MODIFIED CURVATURE DRIVEN DIFFUSION MODEL FOR IMAGE INPAINTING , 2008 .

[35]  L. Vese A Study in the BV Space of a Denoising—Deblurring Variational Problem , 2001 .

[36]  L. Lieu,et al.  Image Restoration and Decomposition via Bounded Total Variation and Negative Hilbert-Sobolev Spaces , 2008 .

[37]  Guillermo Sapiro,et al.  Simultaneous structure and texture image inpainting , 2003, IEEE Trans. Image Process..

[38]  L. Evans Measure theory and fine properties of functions , 1992 .

[39]  Stanley Osher,et al.  Total variation based image restoration with free local constraints , 1994, Proceedings of 1st International Conference on Image Processing.

[40]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[41]  Guillermo Sapiro,et al.  Image inpainting , 2000, SIGGRAPH.

[42]  S. Esedoglu,et al.  ANALYSIS OF A TWO-SCALE CAHN-HILLIARD MODEL FOR IMAGE INPAINTING , 2006 .

[43]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .