Minimax Estimation of Kernel Mean Embeddings
暂无分享,去创建一个
[1] Bharath K. Sriperumbudur. On the optimal estimation of probability measures in weak and strong topologies , 2013, 1310.8240.
[2] Le Song,et al. Feature Selection via Dependence Maximization , 2012, J. Mach. Learn. Res..
[3] Bernhard Schölkopf,et al. A Kernel Two-Sample Test , 2012, J. Mach. Learn. Res..
[4] E. Berger. UNIFORM CENTRAL LIMIT THEOREMS (Cambridge Studies in Advanced Mathematics 63) By R. M. D UDLEY : 436pp., £55.00, ISBN 0-521-46102-2 (Cambridge University Press, 1999). , 2001 .
[5] Alexandre B. Tsybakov,et al. Introduction to Nonparametric Estimation , 2008, Springer series in statistics.
[6] N. Aronszajn. Theory of Reproducing Kernels. , 1950 .
[7] Kenji Fukumizu,et al. Equivalence of distance-based and RKHS-based statistics in hypothesis testing , 2012, ArXiv.
[8] Kenji Fukumizu,et al. Universality, Characteristic Kernels and RKHS Embedding of Measures , 2010, J. Mach. Learn. Res..
[9] Andreas Christmann,et al. Support vector machines , 2008, Data Mining and Knowledge Discovery Handbook.
[10] N. Dinculeanu. Vector Integration and Stochastic Integration in Banach Spaces , 2000, Oxford Handbooks Online.
[11] Gert R. G. Lanckriet,et al. On the empirical estimation of integral probability metrics , 2012 .
[12] Bernhard Schölkopf,et al. A Kernel Method for the Two-Sample-Problem , 2006, NIPS.
[13] Bharath K. Sriperumbudur. Mixture density estimation via Hilbert space embedding of measures , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.
[14] R. M. Dudley,et al. Real Analysis and Probability , 1989 .
[15] Maria L. Rizzo,et al. Brownian distance covariance , 2009, 1010.0297.
[16] Barnabás Póczos,et al. On the Decreasing Power of Kernel and Distance Based Nonparametric Hypothesis Tests in High Dimensions , 2014, AAAI.
[17] Le Song,et al. A Kernel Statistical Test of Independence , 2007, NIPS.
[18] Jean-Philippe Vert,et al. Consistency and Convergence Rates of One-Class SVMs and Related Algorithms , 2006, J. Mach. Learn. Res..
[19] Bernhard Schölkopf,et al. Hilbert Space Embeddings and Metrics on Probability Measures , 2009, J. Mach. Learn. Res..
[20] Bernhard Schölkopf,et al. Kernel Mean Shrinkage Estimators , 2014, J. Mach. Learn. Res..
[21] R. Lyons. Distance covariance in metric spaces , 2011, 1106.5758.
[22] I. J. Schoenberg. Metric spaces and completely monotone functions , 1938 .
[23] Gerald B. Folland,et al. Real Analysis: Modern Techniques and Their Applications , 1984 .
[24] V. Yurinsky. Sums and Gaussian Vectors , 1995 .
[25] I. S. Gradshteyn,et al. Table of Integrals, Series, and Products , 1976 .
[26] Barnabás Póczos,et al. Two-stage sampled learning theory on distributions , 2015, AISTATS.
[27] Maria L. Rizzo,et al. Measuring and testing dependence by correlation of distances , 2007, 0803.4101.
[28] Bernhard Schölkopf,et al. Towards a Learning Theory of Causation , 2015, 1502.02398.
[29] Holger Wendland,et al. Scattered Data Approximation: Conditionally positive definite functions , 2004 .
[30] Bernhard Schölkopf,et al. Kernel Measures of Conditional Dependence , 2007, NIPS.
[31] Le Song,et al. A Hilbert Space Embedding for Distributions , 2007, Discovery Science.
[32] E. L. Lehmann,et al. Theory of point estimation , 1950 .