Effect of inner gas pressure on the elastoplastic behavior of porous materials: A second-order moment micromechanics model

[1]  Taewan Kim,et al.  Nanoscale fluid transport: size and rate effects. , 2008, Nano letters.

[2]  Pallab Barai,et al.  The competition of grain size and porosity in the viscoplastic response of nanocrystalline solids , 2008 .

[3]  V. monchiet,et al.  Macroscopic yield criteria for plastic anisotropic materials containing spheroidal voids , 2008 .

[4]  A. Huespe,et al.  On some topics for the numerical simulation of ductile fracture , 2008 .

[5]  O. Cazacu,et al.  Dynamic expansion of a spherical cavity within a rate-dependent compressible porous material , 2008 .

[6]  Xi Chen,et al.  Pressure-driven water infiltration into carbon nanotube: The effect of applied charges , 2008 .

[7]  Qi‐Chang He,et al.  Effective pressure-sensitive elastoplastic behavior of particle-reinforced composites and porous media under isotropic loading , 2008 .

[8]  Mark F. Horstemeyer,et al.  A physically motivated anisotropic tensorial representation of damage with separate functions for void nucleation, growth, and coalescence , 2007 .

[9]  M. Aly Behavior of closed cell aluminium foams upon compressive testing at elevated temperatures: Experimental results , 2007 .

[10]  Xi Chen,et al.  Energy absorption performance of steel tubes enhanced by a nanoporous material functionalized liquid , 2006 .

[11]  Xi Chen,et al.  Novel technique for measuring the mechanical properties of porous materials by nanoindentation , 2006 .

[12]  M. Mabuchi,et al.  Effect of metal powder size on the gas expansion behavior of 7075 Al alloy in a semisolid state , 2004 .

[13]  E. Sato,et al.  Application of mean-field approximation to elastic-plastic behavior for closed-cell metal foams , 2003 .

[14]  Li Cheng,et al.  Vapor pressure and void size effects on failure of a constrained ductile film , 2003 .

[15]  Tianfu Guo,et al.  Modeling vapor pressure effects on void rupture and crack growth resistance , 2002 .

[16]  K. Murakami,et al.  Evaluation of porosity in porous copper fabricated by unidirectional solidification under pressurized hydrogen , 2001 .

[17]  Thomas Pardoen,et al.  An extended model for void growth and coalescence - application to anisotropic ductile fracture , 2000 .

[18]  M. Ashby,et al.  Metal Foams: A Design Guide , 2000 .

[19]  M. Boyce,et al.  Micromechanics of toughened polycarbonate , 2000 .

[20]  Hilary Bart-Smith,et al.  Experimental analysis of deformation mechanisms in a closed-cell aluminum alloy foam , 2000 .

[21]  G. Hu Composite plasticity based on matrix average second order stress moment , 1997 .

[22]  Pedro Ponte Castañeda Exact second-order estimates for the effective mechanical properties of nonlinear composite materials , 1996 .

[23]  G. Weng,et al.  An Energy Approach to the Plasticity of a Two-Phase Composite Containing Aligned Inclusions , 1995 .

[24]  R. Munamarty,et al.  Popcorning: a failure mechanism in plastic-encapsulated microcircuits , 1995 .

[25]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[26]  Pierre Suquet,et al.  Overall potentials and extremal surfaces of power law or ideally plastic composites , 1993 .

[27]  Tungyang Chen,et al.  Mori-Tanaka Estimates of the Overall Elastic Moduli of Certain Composite Materials , 1992 .

[28]  G. Weng,et al.  A Theory of Plasticity for Porous Materials and Particle-Reinforced Composites , 1992 .

[29]  G. P. Tandon,et al.  A Theory of Particle-Reinforced Plasticity , 1988 .

[30]  Z. Hashin Analysis of Composite Materials—A Survey , 1983 .

[31]  V. Tvergaard On localization in ductile materials containing spherical voids , 1982, International Journal of Fracture.

[32]  V. Tvergaard Influence of voids on shear band instabilities under plane strain conditions , 1981 .

[33]  R. Christensen,et al.  Solutions for effective shear properties in three phase sphere and cylinder models , 1979 .

[34]  A. L. Gurson,et al.  Porous Rigid Plastic Materials Containing Rigid Inclusions; Yield Function, Plastic Potential and Void Nucleation , 1976 .

[35]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[36]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[37]  B. J. Lee,et al.  Constitutive models for power-law viscous solids containing spherical voids , 2009 .

[38]  H. Nakajima,et al.  Extended mean-field method for predicting yield behaviors of porous materials , 2007 .

[39]  T. J. Wang,et al.  A unified approach to predict overall properties of composite materials , 2005 .

[40]  J. Banhart Manufacture, characterisation and application of cellular metals and metal foams , 2001 .

[41]  G. Hu A method of plasticity for general aligned spheroidal void or fiber-reinforced composites , 1996 .

[42]  P. Suquet Overall properties of nonlinear composites: a modified secant moduli theory and its link with Ponte Castañeda's nonlinear variational procedure , 1995 .

[43]  G. Weng,et al.  Plastic potential and yield function of porous materials with aligned and randomly oriented spheroidal voids , 1993 .

[44]  Pedro Ponte Castañeda The effective mechanical properties of nonlinear isotropic composites , 1991 .

[45]  V. Tvergaard Material Failure by Void Growth to Coalescence , 1989 .

[46]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .