GEC into the future: Where are we going and how do we get there?

The field of grammatical error correction (GEC) has made tremendous bounds in the last ten years, but new questions and obstacles are revealing themselves. In this position paper, we discuss the issues that need to be addressed and provide recommendations for the field to continue to make progress, and propose a new shared task. We invite suggestions and critiques from the audience to make the new shared task a community-driven venture.

[1]  Marcin Junczys-Dowmunt,et al.  The AMU System in the CoNLL-2014 Shared Task: Grammatical Error Correction by Data-Intensive and Feature-Rich Statistical Machine Translation , 2014, CoNLL Shared Task.

[2]  Adam Kilgarriff,et al.  Helping Our Own: The HOO 2011 Pilot Shared Task , 2011, ENLG.

[3]  Salim Roukos,et al.  Bleu: a Method for Automatic Evaluation of Machine Translation , 2002, ACL.

[4]  Mitchell P. Marcus,et al.  OntoNotes: The 90% Solution , 2006, NAACL.

[5]  Nizar Habash,et al.  The Illinois-Columbia System in the CoNLL-2014 Shared Task , 2014, CoNLL Shared Task.

[6]  Nitin Madnani,et al.  Predicting Grammaticality on an Ordinal Scale , 2014, ACL.

[7]  Matt Post,et al.  Reassessing the Goals of Grammatical Error Correction: Fluency Instead of Grammaticality , 2016, TACL.

[8]  Helen Yannakoudakis,et al.  Compositional Sequence Labeling Models for Error Detection in Learner Writing , 2016, ACL.

[9]  Hwee Tou Ng,et al.  Building a Large Annotated Corpus of Learner English: The NUS Corpus of Learner English , 2013, BEA@NAACL-HLT.

[10]  Ryo Nagata,et al.  Evaluating performance of grammatical error detection to maximize learning effect , 2010, COLING.

[11]  Slav Petrov,et al.  Overview of the 2012 Shared Task on Parsing the Web , 2012 .

[12]  Shamil Chollampatt,et al.  Adapting Grammatical Error Correction Based on the Native Language of Writers with Neural Network Joint Models , 2016, EMNLP.

[13]  Ted Briscoe,et al.  Automatic Annotation and Evaluation of Error Types for Grammatical Error Correction , 2017, ACL.

[14]  Matt Post,et al.  Ground Truth for Grammatical Error Correction Metrics , 2015, ACL.

[15]  Karin M. Verspoor,et al.  Findings of the 2016 Conference on Machine Translation , 2016, WMT.

[16]  Jill Burstein,et al.  AUTOMATED ESSAY SCORING WITH E‐RATER® V.2.0 , 2004 .

[17]  Hwee Tou Ng,et al.  The CoNLL-2013 Shared Task on Grammatical Error Correction , 2013, CoNLL Shared Task.

[18]  Marcin Junczys-Dowmunt,et al.  Phrase-based Machine Translation is State-of-the-Art for Automatic Grammatical Error Correction , 2016, EMNLP.

[19]  Joel R. Tetreault,et al.  JFLEG: A Fluency Corpus and Benchmark for Grammatical Error Correction , 2017, EACL.

[20]  Beatrice Santorini,et al.  Building a Large Annotated Corpus of English: The Penn Treebank , 1993, CL.

[21]  Helen Yannakoudakis,et al.  A New Dataset and Method for Automatically Grading ESOL Texts , 2011, ACL.

[22]  Nitin Madnani,et al.  Robust Systems for Preposition Error Correction Using Wikipedia Revisions , 2013, NAACL.

[23]  Joel R. Tetreault,et al.  The utility of article and preposition error correction systems for English language learners: Feedback and assessment , 2010 .

[24]  Martin Chodorow,et al.  Problems in Evaluating Grammatical Error Detection Systems , 2012, COLING.

[25]  Ted Briscoe,et al.  Grammatical error correction using neural machine translation , 2016, NAACL.

[26]  Yuji Matsumoto,et al.  Tense and Aspect Error Correction for ESL Learners Using Global Context , 2012, ACL.

[27]  Hwee Tou Ng,et al.  Better Evaluation for Grammatical Error Correction , 2012, NAACL.

[28]  Ashley Oliver,et al.  2016 Report , 2017 .

[29]  Ted Briscoe,et al.  Towards a standard evaluation method for grammatical error detection and correction , 2015, NAACL.

[30]  Hwee Tou Ng,et al.  How Far are We from Fully Automatic High Quality Grammatical Error Correction? , 2015, ACL.