Hydroprocessing of Heavy Oils and Residua

[1]  J. Mooi,et al.  The origin and types of pores in some alumina catalysts , 1968 .

[2]  Y. Okamoto,et al.  Active sites of molybdenum sulfide catalysts supported on Al2O3 and TiO2 for hydrodesulfurization and hydrogenation , 1989 .

[3]  John Meurig Thomas Principles and practice of heterogeneous catalysis , 1996 .

[4]  H. Seki,et al.  Structural change of petroleum asphaltenes and resins by hydrodemetallization , 2000 .

[5]  O. Mullins,et al.  Determination of the Nitrogen Chemical Structures in Petroleum Asphaltenes Using XANES Spectroscopy , 1993 .

[6]  J. Moulijn,et al.  Hydrogenation of nickel and vanadyl tetraphenylporphyrin in absence of a catalyst: A kinetic study , 2001 .

[7]  J. M. Thomas,et al.  Introduction to the principles of heterogeneous catalysis , 1967 .

[8]  R. Ramachandran,et al.  An overview of industrial uses of hydrogen , 1998 .

[9]  I. Saito,et al.  Continuous-Distribution Kinetic Analysis for Asphaltene Hydrocracking , 2000 .

[10]  B. Delmon,et al.  Preparation of Catalysts VII , 1998 .

[11]  P. B. Venuto,et al.  Catalyst-Feedstock-Engineering Interactions in Fluid Catalytic Cracking , 1978 .

[12]  R. A. Ware,et al.  Catalytic Hydrodemetallation of Petroleum , 1988 .

[13]  C. Perego,et al.  Catalyst preparation methods , 1997 .

[14]  Thomas Rostrup-Nielsen,et al.  Manufacture of hydrogen , 2005 .

[15]  R. Murray Gray,et al.  Upgrading Petroleum Residues and Heavy Oils , 1994 .

[16]  James G. Speight,et al.  Petroleum refining processes , 2002 .

[17]  Simon Ivar Andersen,et al.  Aggregation of asphaltenes as determined by calorimetry , 1991 .

[18]  R. J. Quann,et al.  Structure-oriented lumping: describing the chemistry of complex hydrocarbon mixtures , 1992 .

[19]  J. Ancheyta,et al.  Hydrodemetallation (HDM) kinetics of Ni-TPP over Mo/Al2O3-TiO2 catalyst , 2005 .

[20]  S. T. Sie,et al.  Catalyst Deactivation through Pore Mouth Plugging during Residue Desulfurization , 1978 .

[21]  M. Ishii,et al.  Crystal structures of V3S4 and V5S8 , 1975 .

[22]  T. Ono,et al.  Control Of The Pore Structure Of Porous Alumina , 1983 .

[23]  Edward Furimsky,et al.  DEACTIVATION OF HYDROPROCESSING CATALYSTS , 1999 .

[24]  Jorge Ancheyta,et al.  Kinetics of asphaltenes conversion during hydrotreating of Maya crude , 2005 .

[25]  A. Zambrano,et al.  Assessment of Asphaltene Stability in Crude Oils Using Conventional Techniques , 2003 .

[26]  J. Beeckman,et al.  Metal deposition in hydrotreating catalysts. 2. Comparison with experiment , 1990 .

[27]  S. Kasztelan,et al.  Initial deactivation of residue hydrodemetallization catalysts , 1996 .

[28]  J. Speight New approaches to hydroprocessing , 2004 .

[29]  Y. Yoshimura,et al.  Support effect on the catalytic activity and properties of sulfided molybdenum catalysts , 1988 .

[30]  J. Ancheyta-Juárez,et al.  Comparison of different Ni-Mo/alumina catalysts on hydrodemetallization of Maya crude oil , 2001 .

[31]  Edward Furimsky,et al.  Gasification of oil sand coke : Review , 1998 .

[32]  J. Ancheyta,et al.  Hydrotreating of diluted Maya crude with NiMo/Al2O3-TiO2 catalysts: effect of diluent composition , 2004 .

[33]  John J. McKetta,et al.  Petroleum Processing Handbook , 1992 .

[34]  J. Speight The Chemistry and Technology of Petroleum , 1980 .

[35]  Y. Yoshimura,et al.  Deactivation of hydrotreating molybdate catalysts by metal deposition , 1991 .

[36]  I. Merdrignac,et al.  Evolution of Asphaltene Structure during Hydroconversion Conditions , 2006 .

[37]  A. Page Applied heterogeneous catalysis , 1988 .

[38]  J. Ramírez,et al.  Promoting effect of fluorine on cobalt—molybdenum/ titania hydrodesulfurization catalysts , 1991 .

[39]  F. Delannay Characterization of heterogeneous catalysts , 1984 .

[40]  N. Muradov,et al.  How to produce hydrogen from fossil fuels without CO2 emission , 1993 .

[41]  J. Ancheyta,et al.  Hydroprocessing of heavy oil fractions , 2005 .

[42]  J. Ancheyta,et al.  On the effect of reaction conditions on liquid phase sulfiding of a NiMo HDS catalyst , 2004 .

[43]  Usman,et al.  The effect of boron addition on the hydrodesulfurization activity of MoS2/Al2O3 and Co–MoS2/Al2O3 catalysts , 2004 .

[44]  D. Sherwood,et al.  Effect of diffusion on resid hydrodesulfurization activity , 1990 .

[45]  Dien Li,et al.  The effect of boron on HYD, HC and HDS activities of model compounds over Ni–Mo/γ-Al2O3–B2O3 catalysts , 1998 .

[46]  K. Sakanishi,et al.  Catalyst deactivation during the hydrotreatment of asphaltene in an Australian brown coal liquid , 1988 .

[47]  S. Eijsbouts Life cycle of hydroprocessing catalysts and total catalyst management , 2008 .

[48]  D. Trimm,et al.  Coke formation on catalysts during the hydroprocessing of heavy oils , 1991 .

[49]  F. Massoth,et al.  Regeneration of Hydroprocessing Catalysts , 1994 .

[50]  J. Ancheyta,et al.  Effect of hydrotreating conditions on Maya asphaltenes composition and structural parameters , 2005 .

[51]  J. Ohi Hydrogen energy cycle: An overview , 2005 .

[52]  J. Bridgwater,et al.  The extrusion mechanics of pastes—the influence of paste formulation on extrusion parameters , 1987 .

[53]  S. Nakata,et al.  Asphaltene cracking in catalytic hydrotreating of heavy oil , 1981 .

[54]  Michael G. Thomas,et al.  Catalyst deactivation during direct coal liquefaction: a review , 1984 .

[55]  Shinya Sato,et al.  Aggregates Structure Analysis of Petroleum Asphaltenes with Small-Angle Neutron Scattering , 2003 .

[56]  P. Zegers,et al.  Fuel cell commercialization: The key to a hydrogen economy , 2006 .

[57]  J. Ancheyta,et al.  Improved hydrogenolysis (C–S, C–M) function with basic supported hydrodesulfurization catalysts , 2004 .

[58]  F. Massoth,et al.  Diffusion and catalytic activity studies on resid-deactivated HDS catalysts , 1986 .

[59]  J. Ancheyta,et al.  Characteristics of Maya crude hydrodemetallization and hydrodesulfurization catalysts , 2005 .

[60]  Nikos G. Papayannakos,et al.  Preparation of Al2O3 carriers in an integrated mini pilot unit , 2000 .

[61]  Soon-Yong Jeong,et al.  Effect of nitrogen compounds on deactivation of hydrotreating catalysts by coke , 1997 .

[62]  G. Stiegel,et al.  Large-pore NiMoAl2O3 catalysts for coal-liquids upgrading , 1985 .

[63]  D. J. Wilhelm,et al.  Syngas production for gas-to-liquids applications: technologies, issues and outlook , 2001 .

[64]  Andrew Dicks,et al.  Hydrogen generation from natural gas for the fuel cell systems of tomorrow , 1996 .

[65]  R. L. Dickenson,et al.  Refiner options for converting and utilizing heavy fuel oil , 1997 .

[66]  Mohammadi Ali,et al.  Nickel and Vanadyl Porphyrins in Saudi Arabian Crude Oils , 1993 .

[67]  J. N. Armor,et al.  Catalysis and the hydrogen economy , 2005 .

[68]  S. Landa,et al.  Sulphide Catalysts, Their Properties and Applications , 1973 .

[69]  C. Louis,et al.  Hydrodesulfurization of dibenzothiophene on MoS2/MCM-41 and MoS2/SBA-15 catalysts prepared by thermal spreading of MoO3 , 2005 .

[70]  J. Murgich,et al.  Molecular Recognition and Molecular Mechanics of Micelles of Some Model Asphaltenes and Resins , 1996 .

[71]  J. Speight,et al.  Desulfurization of heavy oils and residua , 1981 .

[72]  A. M. Dunker,et al.  Production of hydrogen by thermal decomposition of methane in a fluidized-bed reactor-Effects of catalyst, temperature, and residence time , 2006 .

[73]  O. Mullins Sulfur and Nitrogen Molecular Structures in Asphaltenes and Related Materials Quantified by XANES Spectroscopy , 1995 .

[74]  J. W. Ward Design And Preparation Of Hydrocracking Catalysts , 1983 .

[75]  N. Papayannakos,et al.  Effect of seeding during precursor preparation on the pore structure of alumina catalyst supports , 1993 .

[76]  R. Snel Control of the Porous Structure of Amorphous Silica—Alumina: V. The Effect of Compaction , 1984 .

[77]  I. Wachs,et al.  Characterization of Catalytic Materials , 1992 .

[78]  Charles N. Satterfield,et al.  Trickle‐bed reactors , 1975 .

[79]  James G. Speight,et al.  Thermodynamic models for asphaltene solubility and precipitation , 1999 .

[80]  M. Ledoux,et al.  Hydrodesulfurization (HDS) poisoning by vanadium compounds: EPR and metal solid NMR analysis , 1987 .

[81]  Lanny D. Schmidt,et al.  Catalytic partial oxidation of natural gas to syngas , 1995 .

[82]  Jens R. Rostrup-Nielsen,et al.  Large-Scale Hydrogen Production , 2002 .

[83]  E. Fleischer The Structure of Nickel Etioporphyrin-I , 1963 .

[84]  Zhaobin Wei,et al.  Investigation of the sulfidation of Mo/TiO2-Al2O3 catalysts by TPS and LRS , 1992 .

[85]  A. Gutiérrez-Alejandre,et al.  The role of titania in supported Mo, CoMo, NiMo, and NiW hydrodesulfurization catalysts: analysis of past and new evidences , 2004 .

[86]  T. Yen,et al.  General purpose computer program for exact esr spectrum calculations with applications to vanadium chelates , 1970 .

[87]  B. I. Parsons,et al.  Coke formation on hydrodesulphurization catalysts , 1979 .

[88]  J. Edwards,et al.  Characterization and aging of hydrotreating catalysts exposed to industrial processing conditions , 1996 .

[89]  A. Stanislaus,et al.  Effect of acidic and basic vapors on pore size distribution of alumina under hydrothermal conditions , 1993 .

[90]  J. Ancheyta,et al.  Simulation of an isothermal hydrodesulfurization small reactor with different catalyst particle shapes , 2004 .

[91]  J. Palacios,et al.  Effect of boron addition on the activity and selectivity of hydrotreating CoMo/Al2O3 catalysts , 1995 .

[92]  A. Stanislaus,et al.  Effect of Diluents in Controlling Sediment Formation During Catalytic Hydrocracking of Kuwait Vacuum Residue , 2005 .

[93]  L. Schmidt,et al.  Syngas in millisecond reactors: higher alkanes and fast lightoff , 2003 .

[94]  G. Deo,et al.  Molecular Design of Supported Metal Oxide Catalysts , 1993 .

[95]  J. Ancheyta,et al.  Maya crude hydrodemetallization and hydrodesulfurization catalysts: An effect of TiO2 incorporation in Al2O3 , 2005 .

[96]  S. Lowell Continuous scan mercury porosimetry and the pore potential as a factor in porosimetry hysteresis , 1980 .

[97]  E. Furimsky,et al.  HYDROGEN ACTIVATION BY TRANSITION METAL SULFIDES , 2002 .

[98]  M. Rana,et al.  Catalytic functionalities of TiO2 based SiO2, Al2O3, ZrO2 mixed oxide hydroprocessing catalysts , 1999 .

[99]  D. Trimm Design of industrial catalysts , 1980 .

[100]  T. Yen The role of trace metals in petroleum , 1975 .

[101]  S. Suib,et al.  Decomposition of methane with an autocatalytically reduced nickel catalyst , 2005 .

[102]  J. Ancheyta,et al.  Analysis of the hydrotreatment of Maya heavy crude with NiMo catalysts supported on TiO2-Al2O3 binary oxides: Effect of the incorporation method of Ti , 2005 .

[103]  Takao Suzuki,et al.  NUMERICAL ANALYSIS OF THE EFFECTIVENESS FACTOR FOR NON-CYLINDRICAL EXTRUDED CATALYSTS , 1979 .

[104]  P. G. Menon Coke on catalysts-harmful, harmless, invisible and beneficial types , 1990 .

[105]  B. Srinivas,et al.  Studies on sepiolite supported hydrotreating catalysts , 1998 .

[106]  J. Buckley,et al.  Asphaltene stability in crude oil and aromatic solvents-the influence of oil composition , 2003 .

[107]  J. Muller,et al.  Structural characterization by X-ray absorption spectroscopy (EXAFS/XANES) of the vanadium chemical environment in Boscan asphaltenes , 1984 .

[108]  B. Imelik,et al.  Metal-support and metal-additive effects in catalysis : proceedings of an international symposium , 1982 .

[109]  Michael G. Thomas,et al.  Catalyst deactivation in heavy petroleum and synthetic crude processing: a review , 1985 .

[110]  Wim Turkenburg,et al.  A comparison of electricity and hydrogen production systems with CO2 capture and storage. Part A: Review and selection of promising conversion and capture technologies , 2006 .

[111]  J. Ancheyta,et al.  Support Effects on Hydroprocessing of Maya Heavy Crude , 2005 .

[112]  I. Wiehe,et al.  Asphaltenes, resins, and other petroleum macromolecules , 1996 .

[113]  S. K. Bej,et al.  TiO2–ZrO2 mixed oxide as a support for hydrotreating catalyst , 2001 .

[114]  P. Thiyagarajan,et al.  Subfractionation and characterization of Mayan asphaltene. , 1998 .

[115]  D. Trimm,et al.  Control of porosity and surface area in alumina. I: Effect of preparation conditions , 1989 .

[116]  A. Stanislaus,et al.  Studies on the rejuvenation of spent catalysts : effectiveness and selectivity in the removal of foulant metals from spent hydroprocessing catalysts in coked and decoked forms , 1993 .

[117]  T. Kabe Hydrodesulfurization and hydrodenitrogenation , 1999 .

[118]  D. McCulloch CHAPTER 4 – Catalytic Hydrotreating in Petroleum Refining , 1983 .

[119]  J. Ancheyta,et al.  TiO2–SiO2 supported hydrotreating catalysts: physico-chemical characterization and activities , 2003 .

[120]  S. Dunn Hydrogen Futures: Toward a Sustainable Energy System , 2001 .

[121]  F. Massoth,et al.  Hydrodenitrogenation of Petroleum , 2005 .

[122]  D. Beer,et al.  The Relation between Morphology and Hydrotreating Activity for Supported MoS2 Particles , 2001 .

[123]  J. Nørskov,et al.  The role of reaction pathways and support interactions in the development of high activity hydrotreating catalysts , 2005 .

[124]  Mario Conte,et al.  Hydrogen economy for a sustainable development: state-of-the-art and technological perspectives , 2001 .

[125]  L. Schmidt,et al.  High yields of synthesis gas by millisecond partial oxidation of higher hydrocarbons , 2000 .

[126]  Michael T. Klein,et al.  Mechanistic Kinetic Modeling of Heavy Paraffin Hydrocracking , 2006 .

[127]  J. Ancheyta,et al.  A review of recent advances on process technologies for upgrading of heavy oils and residua , 2007 .

[128]  David C. Arters,et al.  Characterization and Deactivation Studies of Spent Resid Catalyst from Ebullating Bed Service , 1995 .

[129]  J. Ancheyta,et al.  Hydroprocessing of heavy petroleum feeds: Tutorial , 2005 .

[130]  J. Ancheyta,et al.  Effect of alumina preparation on hydrodemetallization and hydrodesulfurization of Maya crude , 2004 .

[131]  I. D. Singh,et al.  Structural characterization of coke on spent hydroprocessing catalysts used for processing of vacuum gas oils , 2004 .

[132]  D. Trimm,et al.  The control of pore size in alumina catalyst supports: A review , 1986 .

[133]  J. Ancheyta,et al.  Alumina–titania binary mixed oxide used as support of catalysts for hydrotreating of Maya heavy crude , 2003 .

[134]  Olli Holopainen IGCC plant employing heavy-petroleum residues , 1993 .

[135]  P. Mitchell Hydrodemetallisation of crude petroleum: fundamental studies , 1990 .

[136]  L. C. Drake Pore-Size Distribution in Porous Materials , 1949 .

[137]  H. Elzerman,et al.  MoS2 structures in high-activity hydrotreating catalysts: I. Semi-quantitative method for evaluation of transmission electron microscopy results. Correlations between hydrodesulfurization and hydrodenitrogenation activities and MoS2 dispersion , 1993 .

[138]  J. Bridgwater,et al.  The influence of formulation on extrudate structure and strength , 1987 .

[139]  G. L. Scheuerman,et al.  Advances in Chevron RDS technology for heavy oil upgrading flexibility , 1993 .

[140]  Karsten Wedel Jacobsen,et al.  Atomic-scale insight into structure and morphology changes of MoS2 nanoclusters in hydrotreating catalysts , 2004 .

[141]  J. Ancheyta,et al.  Heavy oil hydroprocessing over supported NiMo sulfided catalyst: An inhibition effect by added H2S , 2007 .

[142]  S. Zrnčević,et al.  The Relation Between the Quality of Catalyst and Feedstock in the Hydrotreating Process , 1989 .

[143]  Joseph J. Romm,et al.  The Hype About Hydrogen: Fact and Fiction in the Race to Save the Climate , 2004 .

[144]  J. Ancheyta,et al.  Support effects in CoMo hydrodesulfurization catalysts prepared with EDTA as a chelating agent , 2007 .

[145]  M. Riazi Characterization and Properties of Petroleum Fractions , 2005 .

[146]  J. F. Page,et al.  Applied heterogeneous catalysis : design, manufacture, use of solid catalysts , 1987 .

[147]  D. S. Montgomery,et al.  Structural features of Alberta oil sand bitumen and heavy oil asphaltenes , 1992 .

[148]  Debabrata Das,et al.  Hydrogen production by biological processes: a survey of literature , 2001 .

[149]  S. Nakata,et al.  Asphaltene cracking in catalytic hydrotreating of heavy oils. 2. Study of changes in asphaltene structure during catalytic hydroprocessing , 1983 .

[150]  Y. Fukui,et al.  A Prediction Model for Dry Sludge Formation in Residue Hydroconversion , 1989 .

[151]  I. Wender Reactions of synthesis gas , 1996 .

[152]  Jens R. Rostrup-Nielsen,et al.  Hydrogen and Synthesis gas by Steam- and CO2 reforming , 2002 .

[153]  S. Kasztelan,et al.  Coke Versus Metal Deactivation of Residue Hydrodemetallization Catalysts , 1994 .

[154]  G. Ali Mansoori,et al.  Asphaltene flocculation and collapse from petroleum fluids , 2001 .

[155]  F. Delannay High-resolution Electron-microscopy of Hydrodesulfurization Catalysts - a Review , 1985 .

[156]  Y. Yoshimura,et al.  Application of zeolite-based catalyst to hydrocracking of coal-derived liquids , 1990 .

[157]  J. Ancheyta,et al.  MoCo(Ni)/ZrO2–SiO2 hydrotreating catalysts: physico-chemical characterization and activities studies , 2004 .

[158]  J. Speight Upgrading heavy feedstocks , 1986 .

[159]  E. Rogel,et al.  Asphaltenes: Structural Characterization, Self-Association, and Stability Behavior , 2000 .

[160]  J. Ancheyta,et al.  Cumene cracking functionalities on sulfided Co(Ni)Mo/TiO2-SiO2 catalysts , 2004 .

[161]  G. Ali Mansoori,et al.  Modeling of asphaltene and other heavy organic depositions , 1997 .

[162]  James Thomas Richardson,et al.  Principles of Catalyst Development , 1989 .

[163]  J. Ancheyta,et al.  Changes in Asphaltene Properties during Hydrotreating of Heavy Crudes , 2003 .

[164]  J. Bunger,et al.  Chemistry of Asphaltenes , 1982 .

[165]  B. Delmon,et al.  The Adsorption of Nitric Oxide on Supported Co-Mo Hydrodesulfurization Catalysts: A Review , 1995 .

[166]  R. G. Tailleur,et al.  Catalyst pore plugging effects on hydrocracking reactions in an Ebullated bed reactor operation , 2005 .

[167]  P. Tamm,et al.  Effects of feed metals on catalyst aging in hydroprocessing residuum , 1981 .

[168]  M. Rana,et al.  Mixed oxide supported hydrodesulfurization catalysts—a review , 2003 .

[169]  S. Oyama,et al.  Active phase of Ni2P/SiO2 in hydroprocessing reactions , 2004 .

[170]  J. Fierro,et al.  New catalytic routes for syngas and hydrogen production , 1996 .

[171]  S. Andersen,et al.  Changes in Asphaltene Stability during Hydrotreating , 2000 .

[172]  S. T. Sie Consequences of catalyst deactivation for process design and operation , 2001 .

[173]  W. Balthasar Hydrogen production and technology: today, tomorrow and beyond , 1984 .

[174]  Stephen B. Jaffe,et al.  Building useful models of complex reaction systems in petroleum refining , 1996 .

[175]  K. Riahi,et al.  The hydrogen economy in the 21st century: a sustainable development scenario , 2003 .

[176]  C. Louis,et al.  Support effect in hydrotreating catalysts: hydrogenation properties of molybdenum sulfide supported on β-zeolites of various acidities , 2003 .

[177]  Edward Furimsky,et al.  Selection of catalysts and reactors for hydroprocessing , 1998 .

[178]  G. Somorjai,et al.  Structure and Function of the Catalyst and the Promoter in Co—Mo Hydrodesulfurization Catalysts , 1989 .

[179]  B. L. Meyers,et al.  Multitechnique analysis of a deactivated resid demetallation catalyst , 1984 .

[180]  S. A. Sherif,et al.  Wind energy and the hydrogen economy—review of the technology , 2005 .

[181]  J. Ancheyta,et al.  Catalysts for hydroprocessing of Maya heavy crude , 2003 .

[182]  William R. Paterson Petroleum refining: technology and economics 3rd edn. , 1995 .

[183]  M. T. Martínez,et al.  Hydroprocessing of a Maya Residue. 1. Intrinsic Kinetics of Asphaltene Removal Reactions , 2000 .

[184]  G. M. Dhar,et al.  Catalytic functionalities of WS2/ZrO2 , 1992 .

[185]  M. Tojima,et al.  Effect of heavy asphaltene on stability of residual oil , 1998 .

[186]  J. Ancheyta,et al.  Minimum fluidization velocity and bed expansion characteristics of hydrotreating catalysts in ebullated-bed systems , 2004 .

[187]  F. Massoth,et al.  Characterization of nitrogen on aged hydroprocessing catalysts by temperature-programmed oxidation , 1991 .

[188]  J. Ancheyta,et al.  Extraction and characterization of asphaltenes from different crude oils and solvents , 2002 .

[189]  S. Takenaka,et al.  Production of Hydrogen from Methane by a CO2 Emission-Suppressed Process: Methane Decomposition and Gasification of Carbon Nanofibers , 2004 .

[190]  B. Gevert,et al.  Hydrodemetallisation of residual oil with catalysts using fibrillar alumina as carrier material , 1997 .

[191]  L. V. D. Oetelaar,et al.  MoS2 morphology and promoter segregation in commercial Type 2 Ni–Mo/Al2O3 and Co–Mo/Al2O3 hydroprocessing catalysts , 2005 .

[192]  E. Furimsky Thermochemical and mechanistic aspects of removal of sulphur, nitrogen and oxygen from petroleum , 1983 .

[193]  E. Ruckenstein,et al.  Optimum pore size for the catalytic conversion of large molecules , 1981 .

[194]  C. Geantet,et al.  Effect of MoS2 morphology on the HDS activity of hydrotreating catalysts , 1994 .

[195]  J. Pazos,et al.  Effect of catalyst properties and operating conditions on hydroprocessing of high-metals feeds. , 1983 .

[196]  O. Mullins,et al.  Molecular size of asphaltene fractions obtained from residuum hydrotreatment , 2003 .

[197]  J. Ancheyta,et al.  Effect of support composition on hydrogenolysis of thiophene and Maya crude , 2005 .

[198]  Y. Koinuma,et al.  Effect of addition of sulphur and phosphorus on heavy oil hydrotreatment with dispersed molybdenum-based catalysts , 1990 .

[199]  T. Yen,et al.  Macrostructures of the asphaltic fractions by various instrumental methods , 1967 .

[200]  S. Andersen,et al.  Effect of Hydrotreatment on Product Sludge Stability , 2001 .

[201]  H. C. Chen,et al.  Catalyst selection important for residuum hydroprocessing , 1985 .

[202]  J. Paul,et al.  Parallel between infrared characterisation and ab initio calculations of CO adsorption on sulphided Mo catalysts , 2001 .

[203]  J. Keller Diversification of feedstocks and products: Recent trends in the development of solid fuel gasification using the Texaco and the HTW process , 1990 .

[204]  P. Forzatti,et al.  Partial oxidation of light paraffins to synthesis gas in short contact-time reactors , 2004 .

[205]  Raphael Idem,et al.  Crude Oil Chemistry , 2003 .

[206]  P. Raybaud,et al.  THERMIDOR: A new model for combined simulation of operations and optimization of catalysts in residues hydroprocessing units , 2005 .

[207]  S. K. Bej,et al.  Studies on physico-chemical characterization and catalysis on high surface area titania supported molybdenum hydrotreating catalysts , 2001 .

[208]  M. Rana,et al.  Origin of Cracking Functionality of Sulfided (Ni) CoMo/SiO2–ZrO2 Catalysts , 2000 .

[209]  J. Walendziewski,et al.  PREPARATION OF LARGE PORE ALUMINA SUPPORTS FOR HYDRODESULFURIZATION CATALYSTS , 1993 .

[210]  B. Muegge,et al.  Basic studies of deactivation of hydrotreating catalysts with anthracene , 1991 .

[211]  A. Stanislaus,et al.  Effect of phosphorus on the acidity of γ-alumina and on the thermal stability of γ-alumina supported nickel—molybdenum hydrotreating catalysts , 1988 .

[212]  J. Jumas,et al.  Alumina-supported cobalt–molybdenum sulfide modified by tin via surface organometallic chemistry: application to the simultaneous hydrodesulfurization of thiophenic compounds and the hydrogenation of olefins , 2004 .

[213]  Keith L. Hohn,et al.  Partial oxidation of methane to syngas at high space velocities over Rh-coated spheres , 2001 .

[214]  A. Gutiérrez-Alejandre,et al.  Relationship between hydrodesulfurization activity and morphological and structural changes in NiW hydrotreating catalysts supported on Al2O3-TiO2 mixed oxides , 1998 .

[215]  Armando Domínguez,et al.  Capillary condensation in heterogeneous mesoporous networks consisting of variable connectivity and pore-size correlation , 2002 .

[216]  S. T. Sie,et al.  Progress in the catalysis of the upgrading of petroleum residue , 1989 .

[217]  David A. J. Rand,et al.  The hydrogen economy: a threat or an opportunity for lead–acid batteries? , 2005 .

[218]  S. Asaoka,et al.  Recent trends of industrial catalysts for resid hydroprocessing in Japan , 1998 .

[219]  A. Carlsson,et al.  Morphology of WS2 nanoclusters in WS2/C hydrodesulfurization catalysts revealed by high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) imaging , 2004 .

[220]  J. Scherzer Octane-Enhancing, Zeolitic FCC Catalysts: Scientific and Technical Aspects , 1989 .

[221]  J. Ancheyta,et al.  Effect of phosphorus on activity of hydrotreating catalyst of Maya heavy crude , 2005 .

[222]  P. Ratnasamy,et al.  Structural Chemistry of Co-Mo-Alumnina Catalysts , 1980 .

[223]  J. Ancheyta,et al.  Pressure and temperature effects on the hydrodynamic characteristics of ebullated-bed systems , 2005 .

[224]  M. Thomas,et al.  Studies on an aged H-Coal catalyst☆ , 1981 .

[225]  R. Prins,et al.  MAS NMR, TPR, and TEM studies of the interaction of NiMo with alumina and silica-alumina supports , 2003 .

[226]  Y. Miki,et al.  Role of catalyst in hydrocracking of heavy oil , 1983 .

[227]  M. L. Gorbaty,et al.  Direct determination and quantification of sulphur forms in heavy petroleum and coals: 1. The X-ray photoelectron spectroscopy (XPS) approach , 1990 .

[228]  V. Valković Trace elements in petroleum , 1978 .

[229]  Edward Furimsky,et al.  Spent refinery catalysts: Environment, safety and utilization , 1996 .

[230]  J. Pfeiffer,et al.  Asphaltic Bitumen as Colloid System. , 1940 .

[231]  K. R. Rama Rao,et al.  Hydrodesulfurization on MoS2/MgO , 1991 .

[232]  K. Segawa,et al.  Hydrodesulfurization of dibenzothiophene derivatives over TiO2Al2O3 supported sulfided molybdenum catalyst , 1997 .

[233]  E. López-Salinas,et al.  Long-term evaluation of NiMo/alumina-carbon black composite catalysts in hydroconversion of Mexican 538 °c+ vacuum residue , 2005 .

[234]  A. Minchener,et al.  Coal gasification for advanced power generation , 2005 .

[235]  J. Ancheyta,et al.  Precipitation, fractionation and characterization of asphaltenes from heavy and light crude oils , 2004 .

[236]  E. Furimsky Chemical Origin of Coke Deposited on Catalyst Surface , 1977 .

[237]  J. Ogden PROSPECTS FOR BUILDING A HYDROGEN ENERGY INFRASTRUCTURE , 1999 .

[238]  Blaine McIntyre,et al.  Refinery-Wide Optimization with Rigorous Models , 2006 .

[239]  G. Chuah,et al.  The effect of digestion on the surface area and porosity of alumina , 2000 .

[240]  M. Siddiqui,et al.  Characterization of the Structure of Saudi Crude Asphaltenes by X-ray Diffraction , 1997 .

[241]  A. Gruia Recent Advances in Hydrocracking , 2006 .

[242]  Said S.E.H. Elnashaie,et al.  Optimization of Reforming Parameter and Configuration for Hydrogen Production , 2005 .

[243]  J D Sherman,et al.  Synthetic zeolites and other microporous oxide molecular sieves. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[244]  K. Sakanishi,et al.  Structure and properties of sludges produced in the catalytic hydrocracking of vacuum residue , 1989 .

[245]  J. Ancheyta,et al.  Preparation, characterization and evaluation of Maya crude hydroprocessing catalysts , 2004 .

[246]  J. Speight,et al.  Some observations on the molecular nature of petroleum asphaltenes , 1979 .

[247]  Agus Haryanto,et al.  Current status of hydrogen production techniques by steam reforming of ethanol : A review , 2005 .

[248]  O. Mullins,et al.  Molecular Size of Asphaltene Solubility Fractions , 2003 .

[249]  T. Yen,et al.  Investigation of the Structure of Petroleum Asphaltenes by X-Ray Diffraction , 1961 .

[250]  M. Rana,et al.  Competitive effects of nitrogen and sulfur content on activity of hydrotreating CoMo/Al2O3 catalysts: a batch reactor study , 2004 .

[251]  J. Ancheyta,et al.  A comparative study for heavy oil hydroprocessing catalysts at micro-flow and bench-scale reactors , 2005 .

[252]  J. Ancheyta,et al.  Alumina-titania mixed oxide used as support for hydrotreating catalysts of maya heavy crude : Effect of support preparation methods , 2006 .

[253]  H. Toulhoat,et al.  Interrelations between initial pore structure, morphology and distribution of accumulated deposits, and lifetimes of hydrodemetallisation catalysts , 1990 .

[254]  Julius Scherzer,et al.  Hydrocracking Science and Technology , 1996 .

[255]  Freek Kapteijn,et al.  Catalyst deactivation: is it predictable?: What to do? , 2001 .

[256]  J. Ancheyta,et al.  Active carbon catalyst for heavy oil upgrading , 2004 .

[257]  K. M. Sundaram,et al.  MODELING OF HYDROPROCESSING REACTIONS , 1988 .

[258]  Paloma Ferreira-Aparicio,et al.  New Trends in Reforming Technologies: from Hydrogen Industrial Plants to Multifuel Microreformers , 2005 .

[259]  F. P. Knudsen Dependence of Mechanical Strength of Brittle Polycrystalline Specimens on Porosity and Grain Size , 1959 .

[260]  Wenzhao Li,et al.  Promoting effects in hydrogenation and hydrodesulfurization reactions on the zirconia and titania supported catalysts , 2004 .

[261]  J. Ramírez,et al.  The use of TiO2—Al2O3 binary oxides as supports for Mo-based catalysts in hydrodesulfurization of thiophene and dibenzothiophene , 1997 .

[262]  H. Toulhoat,et al.  Industrial MoO3-promoter oxide-γ-Al2O3 hydrotreating catalysts: genesis and architecture description , 1986 .

[263]  R. Chianelli,et al.  Hydrodesulfurization Catalysis by Transition Metal Sulfides , 1981 .