Meta-analysis of 32 genome-wide linkage studies of schizophrenia

A genome scan meta-a nalysis (GSMA) was carried out on 32 independent genome-wide linkage scan analyses that included 3255 pedigrees with 7413 genotyped cases affected with schizophrenia (SCZ) or related disorders. The primary GSMA divided the autosomes into 120 bins, rank-ordered the bins within each study according to the most positive linkage result in each bin, summed these ranks (weighted for study size) for each bin across studies and determined the empirical probability of a given summed rank (PSR) by simulation. Suggestive evidence for linkage was observed in two single bins, on chromosomes 5q (142–168 Mb) and 2q (103–134 Mb). Genome-wide evidence for linkage was detected on chromosome 2q (119–152 Mb) when bin boundaries were shifted to the middle of the previous bins. The primary analysis met empirical criteria for ‘aggregate’ genome-wide significance, indicating that some or all of 10 bins are likely to contain loci linked to SCZ, including regions of chromosomes 1, 2q, 3q, 4q, 5q, 8p and 10q. In a secondary analysis of 22 studies of European-ancestry samples, suggestive evidence for linkage was observed on chromosome 8p (16–33 Mb). Although the newer genome-wide association methodology has greater power to detect weak associations to single common DNA sequence variants, linkage analysis can detect diverse genetic effects that segregate in families, including multiple rare variants within one locus or several weakly associated loci in the same region. Therefore, the regions supported by this meta-analysis deserve close attention in future studies.

E M Wijsman | G Kalsi | T Sigmundsson | Irmansyah | B K Suarez | D Curtis | L Peltonen | G. Abecasis | T. Sigmundsson | T. Paunio | H. Pétursson | L. Peltonen | M. Owen | M. O’Donovan | L. DeLisi | E. Wijsman | H. Nicolini | P. Holmans | C. Lewis | W. Maier | J. Mallet | S. Faraone | P. Sklar | A. McQuillin | C. Pato | N. Williams | N. Norton | D. Curtis | M. Pato | A. Fanous | K. Kendler | M. Tsuang | D. Levinson | M. Karayiorgou | B. Suarez | L. Terenius | B. Lerer | A. Bassett | B. Riley | F. O’Neill | D. Walsh | E. Hare | H. Raventós | M. Escamilla | M. Fallin | G. Nestadt | J. Duan | A. Sanders | P. Gejman | A. Pulver | C. Laurent | B. Mowry | S. Schwab | D. Wildenauer | M. Albus | M. Alexander | D. Dikeos | S. Godard | D. Nertney | J. Silverman | B. Wormley | E. Jazin | E. Lindholm | T. Arinami | L. Terenius | W. Byerley | M. Owen | M. Myles-Worsley | Jacques Mallet | M. Pato | Y. Okazaki | V. Nimgaonkar | H. Gurling | D. Amann-Zalcenstein | M. Maziade | M. Roy | L. Brzustowicz | C. Mérette | R. Crowe | V. Lasseter | J. Roos | G. Kalsi | D. Dikeos | S. Faraone | P. Gejman | A. Sanders | D. Levinson | N. Williams | M. Jay | P. Forabosco | W. Byerley | D. Garver | K S Kendler | R R Crowe | J Mallet | M Myles-Worsley | W Byerley | W Maier | M Albus | M T Tsuang | V L Nimgaonkar | S V Faraone | G Nestadt | L E DeLisi | C M Lewis | M C O'Donovan | J Duan | K. Liang | J. Brynjolfson | D Walsh | L M Brzustowicz | S. Schwab | H Nicolini | P Sklar | C Mérette | M J Owen | A E Pulver | V K Lasseter | P A Holmans | A S Bassett | T Paunio | M. Jay | J Louw Roos | G. Papadimitriou | D G Dikeos | N Norton | A R Sanders | L Terenius | N M Williams | D L Garver | H. Moises | M T Pato | C N Pato | T Arinami | A McQuillin | H M D Gurling | A Fanous | B Lerer | M Maziade | J M Silverman | E Jazin | B Riley | J Brynjolfson | H Petursson | Y Kohn | G R Abecasis | M Y M Ng | D F Levinson | M Escamilla | D B Wildenauer | C Laurent | B J Mowry | M D Fallin | P V Gejman | E Lindholm | H W Moises | P Forabosco | H-G Hwu | Y Okazaki | B Wormley | F A O'Neill | K Y Liang | G M Papadimitriou | S G Schwab | E Hare | H Raventos | M Jay | S Godard | D Nertney | M Alexander | M-A Roy | D Amann-Zalcenstein | M Karayiorgou | M. Ng | B. Mowry | H. Hwu | Y. Kohn | J. Silverman | Claudine Laurent | Michael C. O’Donovan | H. Gurling | Wolfgang Maier | M. Myles‐Worsley | Jon Brynjolfson | L. Peltonen | M. O’Donovan | C. Lewis | Madeline Alexander | J. Mallet | K. Y. Liang | M. Fallin

[1]  M. Tsuang,et al.  Genome-wide linkage scan of schizophrenia: a cross-isolate study. , 2007, Genomics.

[2]  C. Spencer,et al.  Identification of loci associated with schizophrenia by genome-wide association and follow-up , 2008, Nature Genetics.

[3]  Francisco M De La Vega,et al.  A second-generation combined linkage physical map of the human genome. , 2007, Genome research.

[4]  M. Boehnke,et al.  Genome scan of schizophrenia families in a large Veterans Affairs Cooperative Study sample: Evidence for linkage to 18p11.32 and for racial heterogeneity on chromosomes 6 and 14 , 2005, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[5]  P. Levitt,et al.  Making the Case for a Candidate Vulnerability Gene in Schizophrenia: Convergent Evidence for Regulator of G-Protein Signaling 4 (RGS4) , 2006, Biological Psychiatry.

[6]  M. Daly,et al.  Genome-wide scan in Portuguese Island families identifies 5q31–5q35 as a susceptibility locus for schizophrenia and psychosis , 2004, Molecular Psychiatry.

[7]  K. Mossman The Wellcome Trust Case Control Consortium, U.K. , 2008 .

[8]  S. Mccarroll,et al.  Copy-number variation and association studies of human disease , 2007, Nature Genetics.

[9]  Ricardo Segurado,et al.  Genome scan meta-analysis of schizophrenia and bipolar disorder, part I: Methods and power analysis. , 2003, American journal of human genetics.

[10]  K. Kendler,et al.  Evaluating the spectrum concept of schizophrenia in the Roscommon Family Study. , 1995, The American journal of psychiatry.

[11]  H. Coon,et al.  Genomic scan for genes predisposing to schizophrenia. , 1994, American journal of medical genetics.

[12]  P. Visscher,et al.  Rare chromosomal deletions and duplications increase risk of schizophrenia , 2008, Nature.

[13]  A. Forbes,et al.  Estimating risks of common complex diseases across genetic and environmental factors: the example of Crohn disease , 2007, Journal of Medical Genetics.

[14]  B. Kerem,et al.  Genome scan of Arab Israeli families maps a schizophrenia susceptibility gene to chromosome 6q23 and supports a locus at chromosome 10q24 , 2003, Molecular Psychiatry.

[15]  W. Honer,et al.  Location of a major susceptibility locus for familial schizophrenia on chromosome 1q21-q22. , 2000, Science.

[16]  M. Owen,et al.  A systematic genomewide linkage study in 353 sib pairs with schizophrenia. , 2003, American journal of human genetics.

[17]  G Kalsi,et al.  Genomewide genetic linkage analysis confirms the presence of susceptibility loci for schizophrenia, on chromosomes 1q32.2, 5q33.2, and 8p21-22 and provides support for linkage to schizophrenia, on chromosomes 11q23.3-24 and 20q12.1-11.23. , 2001, American journal of human genetics.

[18]  Kari Stefansson,et al.  Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. , 2003, American journal of human genetics.

[19]  Gonçalo R Abecasis,et al.  Genomewide scan in families with schizophrenia from the founder population of Afrikaners reveals evidence for linkage and uniparental disomy on chromosome 1. , 2004, American journal of human genetics.

[20]  P. Holmans,et al.  Genomewide linkage scan of schizophrenia in a large multicenter pedigree sample using single nucleotide polymorphisms , 2008, Molecular Psychiatry.

[21]  Y. Chagnon,et al.  Shared and specific susceptibility loci for schizophrenia and bipolar disorder: a dense genome scan in Eastern Quebec families , 2005, Molecular Psychiatry.

[22]  Lin He,et al.  RGS4 polymorphisms and risk of schizophrenia: An association study in Han Chinese plus meta-analysis , 2006, Neuroscience Letters.

[23]  N. Risch,et al.  Genetic linkage and complex diseases, with special reference to psychiatric disorders , 1990, Genetic epidemiology.

[24]  L. DeLisi,et al.  Genome-wide scan for linkage to schizophrenia in a Spanish-origin cohort from Costa Rica. , 2002, American journal of medical genetics.

[25]  J. Mallet,et al.  No evidence for involvement of KCNN3 (hSKCa3) potassium channel gene in familial and isolated cases of schizophrenia , 1999, European Journal of Human Genetics.

[26]  M. Gladis,et al.  Second stage of a genome scan of schizophrenia: study of five positive regions in an expanded sample. , 2000, American journal of medical genetics.

[27]  T. Frayling Genome–wide association studies provide new insights into type 2 diabetes aetiology , 2007, Nature Reviews Genetics.

[28]  J. Nurnberger,et al.  Diagnostic accuracy and confusability analyses: an application to the Diagnostic Interview for Genetic Studies , 1996, Psychological Medicine.

[29]  E. Wijsman,et al.  Genome-wide scan in a large complex pedigree with predominantly male schizophrenics from the island of Kosrae: evidence for linkage to chromosome 2q , 2003, Molecular Psychiatry.

[30]  Francis S Collins,et al.  A HapMap harvest of insights into the genetics of common disease. , 2008, The Journal of clinical investigation.

[31]  Thomas W. Mühleisen,et al.  Large recurrent microdeletions associated with schizophrenia , 2008, Nature.

[32]  L Kruglyak,et al.  Genome scan of schizophrenia. , 1996, The American journal of psychiatry.

[33]  J. Weissenbach,et al.  An international two–stage genome–wide search for schizophrenia susceptibility genes , 1995, Nature Genetics.

[34]  J. McGrath,et al.  Genomewide linkage scan for schizophrenia susceptibility loci among Ashkenazi Jewish families shows evidence of linkage on chromosome 10q22. , 2003, American journal of human genetics.

[35]  N Risch,et al.  The Future of Genetic Studies of Complex Human Diseases , 1996, Science.

[36]  F. Boaretto,et al.  Genome-wide scan supports the existence of a susceptibility locus for schizophrenia and bipolar disorder on chromosome 15q26 , 2007, Molecular Psychiatry.

[37]  Irmansyah,et al.  Genome‐wide scan in 124 Indonesian sib‐pair families with schizophrenia reveals genome‐wide significant linkage to a locus on chromosome 3p26‐21 , 2008, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[38]  John Stewart,et al.  A genome-wide scan for linkage to chromosomal regions in 382 sibling pairs with schizophrenia or schizoaffective disorder. , 2002, The American journal of psychiatry.

[39]  A. Zhablenski Schizophrenia : manifestations, incidence and course in different cultures , 1992 .

[40]  Christopher G. Mathew,et al.  New links to the pathogenesis of Crohn disease provided by genome-wide association scans , 2008, Nature Reviews Genetics.

[41]  C. Stefanis,et al.  Schizophrenia susceptibility loci on chromosomes 13q32 and 8p21 , 1998, Nature Genetics.

[42]  A. Korten,et al.  Schizophrenia: manifestations, incidence and course in different cultures. A World Health Organization ten-country study. , 1992, Psychological medicine. Monograph supplement.

[43]  Douglas F. Levinson,et al.  GSMA: software implementation of the genome search meta-analysis method , 2005, Bioinform..

[44]  E. Gershon,et al.  Suggestive evidence for a schizophrenia susceptibility locus on chromosome 6q and a confirmation in an independent series of pedigrees. , 1997, Genomics.

[45]  S. Shaw,et al.  A schizophrenia-susceptibility locus at 6q25, in one of the world's largest reported pedigrees. , 2001, American journal of human genetics.

[46]  H. Stefánsson,et al.  Neuregulin 1 and susceptibility to schizophrenia. , 2002, American journal of human genetics.

[47]  Leena Peltonen,et al.  Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: Schizophrenia. , 2003, American journal of human genetics.

[48]  T. Matise,et al.  NIMH Genetics Initiative Millenium Schizophrenia Consortium: linkage analysis of African-American pedigrees. , 1998, American journal of medical genetics.

[49]  A. Robertson,et al.  The power of methods for the detection of major genes affecting quantitative characters , 1974, Heredity.

[50]  J. Lanchbury,et al.  Meta‐analysis of genome searches , 1999, Annals of human genetics.

[51]  Susumu Tonegawa,et al.  Evidence for association of schizophrenia with genetic variation in the 8p21.3 gene, PPP3CC, encoding the calcineurin gamma subunit , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[52]  T. Matise,et al.  Genome scan of European-American schizophrenia pedigrees: results of the NIMH Genetics Initiative and Millennium Consortium. , 1998, American journal of medical genetics.

[53]  Pablo V Gejman,et al.  Genomewide linkage scan of 409 European-ancestry and African American families with schizophrenia: suggestive evidence of linkage at 8p23.3-p21.2 and 11p13.1-q14.1 in the combined sample. , 2006, American journal of human genetics.

[54]  R. Murray,et al.  Heritability estimates for psychotic disorders: the Maudsley twin psychosis series. , 1999, Archives of general psychiatry.

[55]  M. Rietschel,et al.  A genome-wide autosomal screen for schizophrenia susceptibility loci in 71 families with affected siblings: support for loci on chromosome 10p and 6 , 2000, Molecular Psychiatry.

[56]  P. van Eerdewegh,et al.  Genome scan of Han Chinese schizophrenia families from Taiwan: confirmation of linkage to 10q22.3. , 2006, The American journal of psychiatry.

[57]  Naoshi Kaneko,et al.  Genomewide high-density SNP linkage analysis of 236 Japanese families supports the existence of schizophrenia susceptibility loci on chromosomes 1p, 14q, and 20p. , 2005, American journal of human genetics.

[58]  H. Gurling,et al.  Fine Mapping by Genetic Association Implicates the Chromosome 1q23.3 Gene UHMK1, Encoding a Serine/Threonine Protein Kinase, as a Novel Schizophrenia Susceptibility Gene , 2007, Biological Psychiatry.

[59]  J. Mallet,et al.  Genetic study of dopamine D1, D2, and D4 receptors in schizophrenia , 1994, Psychiatry Research.

[60]  H. Nicolini,et al.  A genome‐wide scan for schizophrenia and psychosis susceptibility loci in families of Mexican and Central American ancestry , 2007, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[61]  Bin Xu,et al.  Increased Expression in Dorsolateral Prefrontal Cortex of CAPON in Schizophrenia and Bipolar Disorder , 2005, PLoS medicine.

[62]  John P A Ioannidis,et al.  Heterogeneity testing in meta‐analysis of genome searches , 2005, Genetic epidemiology.

[63]  J D Terwilliger,et al.  Genome-wide scan in a nationwide study sample of schizophrenia families in Finland reveals susceptibility loci on chromosomes 2q and 5q. , 2001, Human molecular genetics.

[64]  P. McGuffin,et al.  Twin concordance for DSM-III schizophrenia. Scrutinizing the validity of the definition. , 1987, Archives of general psychiatry.

[65]  A. Bassett,et al.  Linkage disequilibrium mapping of schizophrenia susceptibility to the CAPON region of chromosome 1q22. , 2004, American journal of human genetics.

[66]  K. Roeder,et al.  Genome-wide multipoint linkage analyses of multiplex schizophrenia pedigrees from the oceanic nation of Palau , 2002, Molecular Psychiatry.

[67]  Cathryn M Lewis,et al.  Testing for genetic heterogeneity in the genome search meta‐analysis method , 2006, Genetic epidemiology.

[68]  Simon C. Potter,et al.  Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls , 2007, Nature.

[69]  R. Straub,et al.  Genome-wide scans of three independent sets of 90 Irish multiplex schizophrenia families and follow-up of selected regions in all families provides evidence for multiple susceptibility genes , 2002, Molecular Psychiatry.

[70]  D. Garver,et al.  Schizophrenia spectrum disorders: an autosomal-wide scan in multiplex pedigrees , 2001, Schizophrenia Research.

[71]  W. Byerley,et al.  Suggestive linkage of schizophrenia to 5p13 in Costa Rica , 2005, Molecular Psychiatry.

[72]  N. Risch Linkage strategies for genetically complex traits. I. Multilocus models. , 1990, American journal of human genetics.

[73]  E. Lander,et al.  Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results , 1995, Nature Genetics.