Multi‐objective shape segmentation and labeling

Shape segmentations designed for different applications show significant variation in the composition of their parts. In this paper, we introduce the segmentation and labeling of shape based on the simultaneous optimization of multiple heterogenous objectives that capture application‐specific segmentation criteria. We present a number of efficient objective functions that capture useful shape adjectives (compact, flat, narrow, perpendicular, etc.) Segmentation descriptions within our framework combine multiple such objective functions with optional labels to define each part. The optimization problem is simplified by proposing weighted Voronoi partitioning as a compact and continuous parametrization of spatially embedded shape segmentations. Separation of spatially close but geodesically distant parts is made possible using multi‐dimensional scaling prior to Voronoi partitioning. Optimization begins with an initial segmentation found using the centroids of a k‐means clustering of surface elements. This partition is automatically labeled to optimize heterogeneous part objectives and the Voronoi centers and their weights optimized using Generalized Pattern Search. We illustrate our framework using several diverse segmentation applications: consistent segmentations with semantic labels, bounding volume hierarchies for path tracing, and automatic rig and clothing transfer between animation characters.

[1]  Nancy M. Amato,et al.  Approximate convex decomposition of polyhedra , 2007, Symposium on Solid and Physical Modeling.

[2]  Marco Attene,et al.  Hierarchical mesh segmentation based on fitting primitives , 2006, The Visual Computer.

[3]  Jovan Popovic,et al.  Automatic rigging and animation of 3D characters , 2007, ACM Trans. Graph..

[4]  Ayellet Tal,et al.  Polyhedral surface decomposition with applications , 2002, Comput. Graph..

[5]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[6]  Marco Attene,et al.  Mesh Segmentation - A Comparative Study , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[7]  Leonidas J. Guibas,et al.  Shape Decomposition using Modal Analysis , 2009, Comput. Graph. Forum.

[8]  Ayellet Tal,et al.  Mesh segmentation using feature point and core extraction , 2005, The Visual Computer.

[9]  Harold W. Kuhn,et al.  The Hungarian method for the assignment problem , 1955, 50 Years of Integer Programming.

[10]  Leonidas J. Guibas,et al.  Partial and approximate symmetry detection for 3D geometry , 2006, ACM Trans. Graph..

[11]  Ariel Shamir,et al.  A survey on Mesh Segmentation Techniques , 2008, Comput. Graph. Forum.

[12]  Zbigniew Michalewicz,et al.  Genetic algorithms + data structures = evolution programs (3rd ed.) , 1996 .

[13]  Daniel Cohen-Or,et al.  A Part‐aware Surface Metric for Shape Analysis , 2009, Comput. Graph. Forum.

[14]  Johann Gottfried Schadow,et al.  The sculptor and art student's guide to the proportions of the human form , 1883 .

[15]  Hao Zhang,et al.  Mesh Segmentation via Spectral Embedding and Contour Analysis , 2007, Comput. Graph. Forum.

[16]  Charles Audet,et al.  Analysis of Generalized Pattern Searches , 2000, SIAM J. Optim..

[17]  Yizhou Yu Laplacian Guided Editing, Synthesis, and Simulation , 2007 .

[18]  Alla Sheffer,et al.  Model Composition from Interchangeable Components , 2007, 15th Pacific Conference on Computer Graphics and Applications (PG'07).

[19]  Karan Singh,et al.  Extraction and remeshing of ellipsoidal representations from mesh data , 2005, Graphics Interface.

[20]  Alla Sheffer,et al.  D‐Charts: Quasi‐Developable Mesh Segmentation , 2005, Comput. Graph. Forum.

[21]  Sebastian Thrun,et al.  Shape from symmetry , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[22]  J. Rossignac,et al.  Plumber: a method for a multi-scale decomposition of 3D shapes into tubular primitives and bodies , 2004, SM '04.

[23]  Evangelos Kalogerakis,et al.  Folding meshes: hierarchical mesh segmentation based on planar symmetry , 2006, SGP '06.

[24]  Ralph R. Martin,et al.  Faithful Least-Squares Fitting of Spheres, Cylinders, Cones and Tori for Reliable Segmentation , 1998, ECCV.

[25]  Eugene Fiume,et al.  Wires: a geometric deformation technique , 1998, SIGGRAPH.

[26]  Ayellet Tal,et al.  Hierarchical mesh decomposition using fuzzy clustering and cuts , 2003, ACM Trans. Graph..

[27]  J. Munkres ALGORITHMS FOR THE ASSIGNMENT AND TRANSIORTATION tROBLEMS* , 1957 .

[28]  Alla Sheffer,et al.  Variational, meaningful shape decomposition , 2006, SIGGRAPH '06.

[29]  Pierre Alliez,et al.  Variational shape approximation , 2004, ACM Trans. Graph..

[30]  Thomas A. Funkhouser,et al.  A benchmark for 3D mesh segmentation , 2009, ACM Trans. Graph..

[31]  O. SIAMJ.,et al.  ON THE CONVERGENCE OF PATTERN SEARCH ALGORITHMS , 1997 .

[32]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[33]  Shenglan Liu,et al.  Segmenting Geometric Reliefs from Textured Background Surfaces , 2007 .

[34]  Ralph R. Martin,et al.  Segmenting reliefs on triangle meshes , 2006, SPM '06.

[35]  Daniel Cohen-Or,et al.  Part Analogies in Sets of Objects , 2008, 3DOR@Eurographics.

[36]  Szymon Rusinkiewicz,et al.  Symmetry descriptors and 3D shape matching , 2004, SGP '04.

[37]  Nancy M. Amato,et al.  Approximate convex decomposition of polyhedra , 2004, Symposium on Solid and Physical Modeling.

[38]  Bernard Chazelle,et al.  Strategies for polyhedral surface decomposition: an experimental study , 1995, SCG '95.

[39]  Ross T. Whitaker,et al.  Partitioning 3D Surface Meshes Using Watershed Segmentation , 1999, IEEE Trans. Vis. Comput. Graph..

[40]  Luiz Velho,et al.  A Hierarchical Segmentation of Articulated Bodies , 2008, Comput. Graph. Forum.

[41]  Thomas A. Funkhouser,et al.  Randomized cuts for 3D mesh analysis , 2008, SIGGRAPH Asia '08.