The Bcl-2 homologue Buffy rescues α-synuclein-induced Parkinson disease-like phenotypes in Drosophila

[1]  R. Kriwacki,et al.  Discoveries and controversies in BCL‐2 protein‐mediated apoptosis , 2016, The FEBS journal.

[2]  Y. Ke,et al.  Differential interaction between iron and mutant alpha-synuclein causes distinctive Parkinsonian phenotypes in Drosophila. , 2016, Biochimica et biophysica acta.

[3]  E. Bézard,et al.  Alpha‐synuclein propagation: New insights from animal models , 2016, Movement disorders : official journal of the Movement Disorder Society.

[4]  Liudi Yuan,et al.  High Throughput Sequencing Identifies MicroRNAs Mediating α-Synuclein Toxicity by Targeting Neuroactive-Ligand Receptor Interaction Pathway in Early Stage of Drosophila Parkinson's Disease Model , 2015, PloS one.

[5]  I. Marzo,et al.  Bcl-2 family of proteins as drug targets for cancer chemotherapy: the long way of BH3 mimetics from bench to bedside. , 2015, Current opinion in pharmacology.

[6]  A. Strasser,et al.  The BCL-2 protein family, BH3-mimetics and cancer therapy , 2015, Cell Death and Differentiation.

[7]  B. Wang,et al.  Nrf2 inducer and cncC overexpression attenuates neurodegeneration due to α-synuclein in Drosophila. , 2015, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[8]  G. Dewson,et al.  Mitochondria and apoptosis: emerging concepts , 2015, F1000prime reports.

[9]  S. Tait,et al.  Mitochondrial apoptosis: killing cancer using the enemy within , 2015, British Journal of Cancer.

[10]  H. Puthalakath,et al.  BH3‐only proteins: a 20‐year stock‐take , 2015, The FEBS journal.

[11]  Narmada Thanki,et al.  CDD: NCBI's conserved domain database , 2014, Nucleic Acids Res..

[12]  B. E. Staveley,et al.  Drosophila Models of Parkinson Disease , 2015 .

[13]  H. Ahsan,et al.  The mystery of BCL2 family: Bcl-2 proteins and apoptosis: an update , 2015, Archives of Toxicology.

[14]  Nektarios Tavernarakis,et al.  Spermidine protects against α-synuclein neurotoxicity , 2014, Cell cycle.

[15]  I. Guénal,et al.  The pro-apoptotic activity of Drosophila Rbf1 involves dE2F2-dependent downregulation of diap1 and buffy mRNA , 2014, Cell Death and Disease.

[16]  M. Guo Drosophila as a model to study mitochondrial dysfunction in Parkinson's disease. , 2012, Cold Spring Harbor perspectives in medicine.

[17]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[18]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[19]  J. Martinou,et al.  Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. , 2011, Developmental cell.

[20]  P. Chan,et al.  α-Synuclein overexpression impairs mitochondrial function by associating with adenylate translocator. , 2011, The international journal of biochemistry & cell biology.

[21]  V. Choubey,et al.  Mutant A53T α-Synuclein Induces Neuronal Death by Increasing Mitochondrial Autophagy* , 2011, The Journal of Biological Chemistry.

[22]  C. Oliveira,et al.  Mitochondrial Dysfunction: The Road to Alpha-Synuclein Oligomerization in PD , 2011, Parkinson's disease.

[23]  K. McCall,et al.  Bcl-2 proteins and autophagy regulate mitochondrial dynamics during programmed cell death in the Drosophila ovary , 2011, Development.

[24]  A. Whitworth,et al.  Drosophila models of Parkinson's disease. , 2011, Advances in genetics.

[25]  J. Andersen,et al.  Mitochondrial alpha-synuclein accumulation impairs complex I function in dopaminergic neurons and results in increased mitophagy in vivo , 2010, Neuroscience Letters.

[26]  George R. Jackson,et al.  Neurodegenerative models in Drosophila: Polyglutamine disorders, Parkinson disease, and amyotrophic lateral sclerosis , 2010, Neurobiology of Disease.

[27]  K. White,et al.  grim promotes programmed cell death of Drosophila microchaete glial cells , 2010, Mechanisms of Development.

[28]  Rodrigo Lopez,et al.  A new bioinformatics analysis tools framework at EMBL–EBI , 2010, Nucleic Acids Res..

[29]  F. Gmeiner,et al.  Modelling Parkinson’s Disease in Drosophila , 2009, NeuroMolecular Medicine.

[30]  T. Gasser Molecular pathogenesis of Parkinson disease: insights from genetic studies , 2009, Expert Reviews in Molecular Medicine.

[31]  I. Guénal,et al.  Mitochondria, Bcl-2 family proteins and apoptosomes: of worms, flies and men. , 2009, Frontiers in bioscience.

[32]  T. Dawson,et al.  What causes cell death in Parkinson's disease? , 2008, Annals of neurology.

[33]  B. E. Staveley,et al.  Pink1 suppresses alpha-synuclein-induced phenotypes in a Drosophila model of Parkinson's disease. , 2008, Genome.

[34]  R. Youle,et al.  Mitochondrial dynamics and apoptosis. , 2008, Genes & development.

[35]  Seon-Yong Jeong,et al.  The role of mitochondria in apoptosis. , 2008, BMB reports.

[36]  J. Burr,et al.  Drosophila Bcl‐2 proteins participate in stress‐induced apoptosis, but are not required for normal development , 2007, Genesis.

[37]  J. Schulz Mechanisms of neurodegeneration in idiopathic Parkinson's disease. , 2007, Parkinsonism & related disorders.

[38]  Sunhong Kim,et al.  Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin , 2006, Nature.

[39]  B. E. Staveley,et al.  Mutant α-synuclein-induced degeneration is reduced by parkin in a fly model of Parkinson's disease , 2006 .

[40]  B. E. Staveley,et al.  Mutant alpha-synuclein-induced degeneration is reduced by parkin in a fly model of Parkinson's disease. , 2006, Genome.

[41]  S. Kornbluth,et al.  Apoptosis in Drosophila: neither fish nor fowl (nor man, nor worm) , 2005, Journal of Cell Science.

[42]  B. E. Staveley,et al.  parkin counteracts symptoms in a Drosophila model of Parkinson's disease , 2004, BMC Neuroscience.

[43]  Sharad Kumar,et al.  Buffy, a Drosophila Bcl‐2 protein, has anti‐apoptotic and cell cycle inhibitory functions , 2003, The EMBO journal.

[44]  S. Cory,et al.  The Bcl2 family: regulators of the cellular life-or-death switch , 2002, Nature Reviews Cancer.

[45]  Sharad Kumar,et al.  Death to flies: Drosophila as a model system to study programmed cell death. , 2002, Journal of immunological methods.

[46]  T. Fan,et al.  Bcl-2 family proteins and apoptosis. , 2002, Sheng wu hua xue yu sheng wu wu li xue bao Acta biochimica et biophysica Sinica.

[47]  Y. Tsujimoto Bcl-2 Family of Proteins: Life-or-Death Switch in Mitochondria , 2002, Bioscience reports.

[48]  J. Trojanowski,et al.  Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson's disease. , 2002, Science.

[49]  John Q. Trojanowski,et al.  Chaperone Suppression of α-Synuclein Toxicity in a Drosophila Model for Parkinson's Disease , 2001, Science.

[50]  A. Godzik,et al.  Drosophila pro-apoptotic Bcl-2/Bax homologue reveals evolutionary conservation of cell death mechanisms. , 2000, The Journal of biological chemistry.

[51]  R. Cagan,et al.  The Drosophila Bcl-2 family member dBorg-1 functions in the apoptotic response to UV-irradiation , 2000, Current Biology.

[52]  W. Bender,et al.  A Drosophila model of Parkinson's disease , 2000, Nature.

[53]  Sharad Kumar,et al.  Debcl, a Proapoptotic Bcl-2 Homologue, Is a Component of the Drosophila melanogaster Cell Death Machinery , 2000, The Journal of cell biology.

[54]  J. Hirsh,et al.  Ectopic G-protein expression in dopamine and serotonin neurons blocks cocaine sensitization in Drosophila melanogaster , 2000, Current Biology.

[55]  H. Okano,et al.  Drob-1, a Drosophila member of the Bcl-2/CED-9 family that promotes cell death. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Georg Auburger,et al.  The ubiquitin pathway in Parkinson's disease , 1998, Nature.

[57]  S. Cory,et al.  The Bcl-2 protein family: arbiters of cell survival. , 1998, Science.

[58]  Robert L. Nussbaum,et al.  Mutation in the α-Synuclein Gene Identified in Families with Parkinson's Disease , 1997 .

[59]  H. Steller,et al.  Facing death in the fly: genetic analysis of apoptosis in Drosophila. , 1997, Trends in genetics : TIG.

[60]  M. Freeman,et al.  Reiterative Use of the EGF Receptor Triggers Differentiation of All Cell Types in the Drosophila Eye , 1996, Cell.

[61]  L. Forno,et al.  Neuropathology of Parkinson's Disease , 1996, Journal of neuropathology and experimental neurology.

[62]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[63]  L. Forno Neuropathologic Features of Parkinson's, Huntington's, and Alzheimer's Diseases a , 1992, Annals of the New York Academy of Sciences.

[64]  A. Hilliker,et al.  Phenotypic consequences of copper-zinc superoxide dismutase overexpression in Drosophila melanogaster. , 1990, Genome.