A hybrid machine learning model for multi-document summarization

[1]  Lei Li,et al.  Multi-document summarization via submodularity , 2012, Applied Intelligence.

[2]  Xiaojun Wan,et al.  Towards a Unified Approach to Simultaneous Single-Document and Multi-Document Summarizations , 2010, COLING.

[3]  Dianne P. O'Leary,et al.  Arabic/English Multi-document Summarization with CLASSY - The Past and the Future , 2008, CICLing.

[4]  Hyoil Han,et al.  The use of domain-specific concepts in biomedical text summarization , 2007, Inf. Process. Manag..

[5]  Karel Jezek,et al.  Two uses of anaphora resolution in summarization , 2007, Inf. Process. Manag..

[6]  Tadashi Nomoto,et al.  Discriminative sentence compression with conditional random fields , 2007, Inf. Process. Manag..

[7]  Tat-Seng Chua,et al.  Document concept lattice for text understanding and summarization , 2007, Inf. Process. Manag..

[8]  Jonas Sjöbergh,et al.  Older versions of the ROUGEeval summarization evaluation system were easier to fool , 2007, Inf. Process. Manag..

[9]  Richard M. Schwartz,et al.  Task-based evaluation of text summarization using Relevance Prediction , 2007, Inf. Process. Manag..

[10]  Sanda M. Harabagiu,et al.  Satisfying information needs with multi-document summaries , 2007, Inf. Process. Manag..

[11]  Xin He,et al.  Generating gene summaries from biomedical literature: A study of semi-structured summarization , 2007, Inf. Process. Manag..

[12]  Bonnie J. Dorr,et al.  Exploiting aspectual features and connecting words for summarization-inspired temporal-relation extraction , 2007, Inf. Process. Manag..

[13]  Jimmy J. Lin,et al.  Multi-candidate reduction: Sentence compression as a tool for document summarization tasks , 2007, Inf. Process. Manag..

[14]  Marie-Francine Moens,et al.  Summarizing court decisions , 2007, Inf. Process. Manag..

[15]  Pablo Gervás,et al.  User-model based personalized summarization , 2007, Inf. Process. Manag..

[16]  Paul Over,et al.  DUC in context , 2007, Inf. Process. Manag..

[17]  Manabu Okumura,et al.  Supervised automatic evaluation for summarization with voted regression model , 2007, Inf. Process. Manag..

[18]  Xiaojun Wan,et al.  Improved Affinity Graph Based Multi-Document Summarization , 2006, NAACL.

[19]  Wei-Pang Yang,et al.  Chinese Text Summarization Using a Trainable Summarizer and Latent Semantic Analysis , 2002, ICADL.

[20]  Xin Liu,et al.  Generic text summarization using relevance measure and latent semantic analysis , 2001, SIGIR '01.

[21]  Yuji Matsumoto,et al.  A new approach to unsupervised text summarization , 2001, SIGIR '01.

[22]  Inderjeet Mani,et al.  The Challenges of Automatic Summarization , 2000, Computer.

[23]  Jade Goldstein-Stewart,et al.  Summarizing text documents: sentence selection and evaluation metrics , 1999, SIGIR '99.

[24]  Robert J. Gaizauskas,et al.  Using Coreference Chains for Text Summarization , 1999, COREF@ACL.

[25]  Pat Langley,et al.  Selection of Relevant Features and Examples in Machine Learning , 1997, Artif. Intell..

[26]  Eduard Hovy,et al.  Automated Text Summarization in SUMMARIST , 1997, ACL 1997.

[27]  Inderjeet Mani,et al.  Summarizing Similarities and Differences Among Related Documents , 1997, Information Retrieval.

[28]  Gerard Salton,et al.  Automatic Text Structuring and Summarization , 1997, Inf. Process. Manag..

[29]  Dragomir R. Radev,et al.  Generating summaries of multiple news articles , 1995, SIGIR '95.

[30]  Francine Chen,et al.  A trainable document summarizer , 1995, SIGIR '95.

[31]  H. P. Edmundson,et al.  New Methods in Automatic Extracting , 1969, JACM.

[32]  Hans Peter Luhn,et al.  The Automatic Creation of Literature Abstracts , 1958, IBM J. Res. Dev..

[33]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[34]  Claude E. Shannon,et al.  The mathematical theory of communication , 1950 .

[35]  Dianne P. O'Leary,et al.  CLASSY 2011 at TAC: Guided and Multi-lingual Summaries and Evaluation Metrics , 2011, TAC.

[36]  Fuji Ren,et al.  AUTOMATIC TEXT SUMMARIZATION USING SUPPORT VECTOR MACHINE , 2009 .

[37]  Fuji Ren,et al.  GA, MR, FFNN, PNN and GMM based models for automatic text summarization , 2009, Comput. Speech Lang..

[38]  Kwang-Ting Cheng,et al.  Fundamentals of algorithms , 2009 .

[39]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[40]  Wei-Pang Yang,et al.  Text summarization using a trainable summarizer and latent semantic analysis , 2005, Inf. Process. Manag..

[41]  Inderjeet Mani,et al.  Summariz-ing Similarities and Differences Among Related Doc-uments , 2000, AAAI Conference on Artificial Intelligence.

[42]  Andrew McCallum,et al.  Using Maximum Entropy for Text Classification , 1999 .

[43]  Jade Goldstein-Stewart,et al.  The use of MMR, diversity-based reranking for reordering documents and producing summaries , 1998, SIGIR '98.

[44]  Mary Ellen Okurowski,et al.  A Scalable Summarization System Using Robust NLP , 1997 .

[45]  Simone Teufel,et al.  Sentence extraction as a classification task , 1997 .

[46]  Sheryl R. Young,et al.  Automatic Classification and Summarization of Banking Telexes , 1985, CAIA.