Strain rate dependent mechanical properties in single crystal nickel nanowires

We measure the strain rate dependence of 0.2% offset yield stress in single-crystal nickel nanowires with diameters ranging from 80 to 300 nm. In situ tensile experiments with strain rates from 10−4 s−1 to 10−2 s−1 were conducted, and the small activation volume (∼10b3, where b is the Burgers vector length) and high strain-rate sensitivity (∼0.1) were obtained. These results agreed with atomistic simulations. Our work provides insights into the strength-limiting and rate-controlling mechanism of plasticity at the nanoscale.

[1]  J. Lou,et al.  Size-dependent fracture mode transition in copper nanowires. , 2012, Small.

[2]  J. Lou,et al.  Size dependent mechanical properties of single crystalline nickel nanowires , 2012 .

[3]  Jun Lou,et al.  Surface dislocation nucleation mediated deformation and ultrahigh strength in sub-10-nm gold nanowires , 2011 .

[4]  Julia R. Greer,et al.  Emergence of strain-rate sensitivity in Cu nanopillars: Transition from dislocation multiplication to dislocation nucleation , 2011 .

[5]  J. Greer,et al.  Tensile deformation of electroplated copper nanopillars , 2011 .

[6]  Seunghwa Ryu,et al.  Entropic effect on the rate of dislocation nucleation , 2010, Proceedings of the National Academy of Sciences.

[7]  Ting Zhu,et al.  Ultra-strength materials , 2010 .

[8]  Hao Lu,et al.  Development and Application of a Novel Microfabricated Device for the In Situ Tensile Testing of 1-D Nanomaterials , 2010, Journal of Microelectromechanical Systems.

[9]  Shouheng Sun,et al.  Cold welding of ultrathin gold nanowires. , 2010, Nature nanotechnology.

[10]  Blythe G. Clark,et al.  Corrigendum to “Effect of orientation and loading rate on compression behavior of small-scale Mo pillars” [Mater. Sci. Eng. A 508 (2009) 241–246] , 2010 .

[11]  D. Warner,et al.  Origins and implications of temperature-dependent activation energy barriers for dislocation nucleation in face-centered cubic metals , 2009 .

[12]  T. Zhu,et al.  Size dependence of rate-controlling deformation mechanisms in nanotwinned copper , 2009 .

[13]  T. Zhu,et al.  Mechanics of Ultra-Strength Materials , 2009 .

[14]  K. Gall,et al.  On the elastic modulus of metallic nanowires. , 2008, Nano letters.

[15]  Blythe G. Clark,et al.  Size effect on strength and strain hardening of small-scale [111] nickel compression pillars , 2008 .

[16]  Ting Zhu,et al.  Temperature and strain-rate dependence of surface dislocation nucleation. , 2008, Physical review letters.

[17]  Charles M. Lieber,et al.  Nanoelectronics from the bottom up. , 2007, Nature materials.

[18]  G. Pharr,et al.  Compressive strengths of molybdenum alloy micro-pillars prepared using a new technique , 2007 .

[19]  C. A. Volkert,et al.  Size effects in the deformation of sub-micron Au columns , 2006 .

[20]  A. Hamza,et al.  Temperature-dependent strain rate sensitivity and activation volume of nanocrystalline Ni , 2006 .

[21]  Julia R. Greer,et al.  Size dependence of mechanical properties of gold at the sub-micron scale , 2005 .

[22]  K. Gall,et al.  The Strength of Gold Nanowires , 2004 .

[23]  D. Dimiduk,et al.  Sample Dimensions Influence Strength and Crystal Plasticity , 2004, Science.

[24]  Y. Mishin,et al.  Atomistic modeling of the γ and γ'-phases of the Ni-Al system , 2004 .

[25]  Charles M. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.