Discrete approximation of a free discontinuity problem

We approximate by discrete Г-convergence a functional proposed by Mumford-Shah for a variational approach to image segmentation. Such a functional is first relaxed with a sequence of nonconvex functionals, which in turn, are dis-cretized by piecewise linear finite elements. Under a suitable relation between the relaxation parameter ∊and the meshsize h, the convergence of the discrete functionals and the compactness of any sequence of discrete minimizers are proved. The proof relies on the techniques of Г-convergence and on the properties of the Lagrange interpolation and Clement operators.

[1]  E. Giusti Minimal surfaces and functions of bounded variation , 1977 .

[2]  Jayant Shah Segmentation by nonlinear diffusion. II , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[3]  E. D. Giorgi,et al.  Existence theorem for a minimum problem with free discontinuity set , 1989 .

[4]  H. Fédérer Geometric Measure Theory , 1969 .

[5]  James R. Munkres,et al.  Elements of algebraic topology , 1984 .

[6]  Decision Systems.,et al.  Variational problems in SBV , 1988 .

[7]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[8]  J. Ericksen Liquid crystals with variable degree of orientation , 1991 .

[9]  Riccardo March,et al.  Visual reconstruction with discontinuities using variational methods , 1992, Image Vis. Comput..

[10]  Azriel Rosenfeld,et al.  Digital Picture Processing , 1976 .

[11]  Livio Clemente Piccinini,et al.  Frontiere orientate di misura minima e questioni collegate , 1972 .

[12]  Maurizio Paolini,et al.  Numerical minimization of geometrical type problems related to calculus of variations , 1990 .

[13]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  L. Ambrosio Existence theory for a new class of variational problems , 1990 .

[15]  A. I. Vol'pert,et al.  Analysis in classes of discontinuous functions and equations of mathematical physics , 1985 .

[16]  E. Giorgi,et al.  Un nuovo tipo di funzionale del calcolo delle variazioni , 1988 .

[17]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[18]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[19]  S. Mitter,et al.  An existence theorem and lattice approximations for a variational problem arising in computer vision , 1990 .

[20]  L. Ambrosio,et al.  Approximation of functional depending on jumps by elliptic functional via t-convergence , 1990 .

[21]  L. Ambrosio Variational problems in SBV and image segmentation , 1989 .

[22]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[23]  W. Ziemer Weakly differentiable functions , 1989 .

[24]  U. Massari,et al.  Minimal Surfaces of Codimension One , 1984 .

[25]  J. Shah Properties of energy-minimizing segmentations , 1992 .

[26]  Jean-Michel Morel,et al.  A variational method in image segmentation: Existence and approximation results , 1992 .

[27]  J. Morel,et al.  Segmentation of images by variational methods: a constructive approach. , 1988 .