Controlling the freezing process of nano-enhanced phase change materials with internal fins in the latent thermal energy storage system

[1]  M. Sardarabadi,et al.  Performance enhancement of triplex-tube heat storage unit using branched fins during solidification and melting processes: A 2D numerical parametric investigation , 2023, Thermal Science and Engineering Progress.

[2]  Ranchan Chauhan,et al.  Investigation and optimization of solidification performance of concentration tube type latent heat storage unit with herringbone wavy fin designs , 2022, Applied Thermal Engineering.

[3]  S. Dhahbi,et al.  A hybrid solidification enhancement in a latent-heat storage system with nanoparticles, porous foam, and fin-aided foam strips , 2022, Journal of Energy Storage.

[4]  W. Yaïci,et al.  Solidification of nano-enhanced PCM-porous composites in a cylindrical cold thermal energy storage enclosure , 2022, Case Studies in Thermal Engineering.

[5]  S. D. Farahani,et al.  Control of PCM melting process in an annular space via continuous or discontinuous fin and non-uniform magnetic field , 2022, Journal of Energy Storage.

[6]  W. Yaïci,et al.  Twisted-fin parametric study to enhance the solidification performance of phase-change material in a shell-and-tube latent heat thermal energy storage system , 2022, J. Comput. Des. Eng..

[7]  E. Izadpanah,et al.  The influence of energy storage container geometry on the melting and solidification of PCM , 2022, International Communications in Heat and Mass Transfer.

[8]  M. M. Zerafat,et al.  Numerical Modeling of the Effect of Nanoparticle Concentration on Solidification Rate of Phase Change Materials in Thermal Energy Storage Systems , 2022, Heat Transfer Engineering.

[9]  R. Pitchumani,et al.  Melting and solidification of a phase change material with constructal tree-shaped fins for thermal energy storage , 2022, Journal of Energy Storage.

[10]  Qiuwan Wang,et al.  Predictions of flow and temperature field in a T-junction based on dynamic mode decomposition and deep learning , 2022, Energy.

[11]  Zhangjing Zheng,et al.  Improving the solidification performance of a latent heat thermal energy storage unit using arrow-shaped fins obtained by an innovative fast optimization algorithm , 2022, Renewable Energy.

[12]  Zhangjing Zheng,et al.  Improving the solidification performance of a shell‐and‐tube latent‐heat thermal energy storage unit using a connected‐Y‐shaped fin , 2022, International Journal of Energy Research.

[13]  Z. Said,et al.  Influence of longitudinal fin arrangement on the melting and solidification inside the triplex tube latent heat thermal storage system , 2022, Journal of Energy Storage.

[14]  M. Selim,et al.  Modeling for solidification of paraffin equipped with nanoparticles utilizing fins , 2022, Journal of Energy Storage.

[15]  Mohammad Hassan Shahavi,et al.  Performance enhancement of nano PCM solidification in a hexagonal storage unit with innovative fin shapes dealing with time-dependent boundary conditions , 2022, Energy Reports.

[16]  S. D. Farahani,et al.  Numerical simulation of NEPCM series two-layer solidification process in a triple tube with porous fin , 2021, Case Studies in Thermal Engineering.

[17]  A. Sultan,et al.  Melting and solidification characteristics of cylindrical encapsulated phase change materials , 2021, Journal of Energy Storage.

[18]  S. D. Farahani,et al.  Melting of non-Newtonian phase change material in a finned triple-tube: Efficacy of non-uniform magnetic field , 2021, Case Studies in Thermal Engineering.

[19]  Balamurugan A. Gurunathan,et al.  State of art review on the solidification and melting characteristics of phase change material in triplex-tube thermal energy storage , 2021 .

[20]  Xiaohu Yang,et al.  Solidification in a shell-and-tube thermal energy storage unit filled with longitude fins and metal foam: A numerical study , 2021, Energy and Built Environment.

[21]  Gurpreet Singh Sodhi,et al.  Compound charging and discharging enhancement in multi-PCM system using non-uniform fin distribution , 2021 .

[22]  A. Asgari,et al.  Simulation of solidification process of phase change materials in a heat exchanger using branch-shaped fins , 2021 .

[23]  A. Nabizadeh,et al.  An optimization study of solidification procedure in a wavy- wall storage unit considering the impacts of NEPCM and curved fin , 2021 .

[24]  M. Dekhil,et al.  Numerical analysis of the performance enhancement of a latent heat storage shell and tube unit using finned tubes during melting and solidification , 2021 .

[25]  Hao Peng,et al.  Numerical study on solidification behavior and exergy analysis of a latent heat storage unit with innovative circular superimposed longitudinal fins , 2021 .

[26]  S. Yao,et al.  Study on solidification performance of PCM by longitudinal triangular fins in a triplex-tube thermal energy storage system , 2021, Energy.

[27]  M. Shafii,et al.  Solidification enhancement in triplex thermal energy storage system via triplets fins configuration and hybrid nanoparticles , 2021 .

[28]  S. D. Farahani,et al.  EFFICACY OF MAGNETIC FIELD ON NANOPARTICLE-ENHANCED PHASE CHANGE MATERIAL MELTING IN A TRIPLE TUBE WITH POROUS FIN , 2021, Heat Transfer Research.

[29]  N. Abu‐Hamdeh,et al.  Approaches for expedition of discharging of PCM involving nanoparticles and radial fins , 2020 .

[30]  D. Ganji,et al.  Effect of two different fins (longitudinal-tree like) and hybrid nano-particles (MoS2-TiO2) on solidification process in triplex latent heat thermal energy storage system , 2020 .

[31]  D. Toghraie,et al.  Analysis of entropy generation of ferrofluid flow in the microchannel with twisted porous ribs: The two-phase investigation with various porous layers , 2020 .

[32]  M. Sheikholeslami,et al.  Melting and solidification within an energy storage unit with triangular fin and CuO nano particles , 2020 .

[33]  A. Shahsavar,et al.  Hydrothermal and entropy generation specifications of a hybrid ferronanofluid in microchannel heat sink embedded in CPUs , 2020 .

[34]  D. Toghraie,et al.  Energy efficiency optimization of the waste heat recovery system with embedded phase change materials in greenhouses: A thermo-economic-environmental study , 2020 .

[35]  Mert Gürtürk,et al.  A new approach in the design of heat transfer fin for melting and solidification of PCM , 2020 .

[36]  H. Fu,et al.  Effect of scanning speed on the solidification process of Al2O3/GdAlO3/ZrO2 eutectic ceramics in a single track by selective laser melting , 2019, Ceramics International.

[37]  Omid Ali Akbari,et al.  Effect of radiation on laminar natural convection of nanofluid in a vertical channel with single- and two-phase approaches , 2019, Journal of Thermal Analysis and Calorimetry.

[38]  Davood Toghraie,et al.  Heat and fluid flow analysis of metal foam embedded in a double-layered sinusoidal heat sink under local thermal non-equilibrium condition using nanofluid , 2019, Journal of Thermal Analysis and Calorimetry.

[39]  M. Avci,et al.  Melting and solidification of PCM in a tube-in-shell unit: Effect of fin edge lengths' ratio , 2019, Journal of Energy Storage.

[40]  Omid Ali Akbari,et al.  Eulerian–Eulerian multi-phase RPI modeling of turbulent forced convective of boiling flow inside the tube with porous medium , 2019, International Journal of Numerical Methods for Heat & Fluid Flow.

[41]  Ahmad Shafee,et al.  Heat transfer behavior of nanoparticle enhanced PCM solidification through an enclosure with V shaped fins , 2019, International Journal of Heat and Mass Transfer.

[42]  I. Tlili,et al.  Solidification process through a solar energy storage enclosure using various sizes of Al2O3 nanoparticles , 2019, Journal of Molecular Liquids.

[43]  Ali J. Chamkha,et al.  Two-phase investigation of water-Al2O3 nanofluid in a micro concentric annulus under non-uniform heat flux boundary conditions , 2019, International Journal of Numerical Methods for Heat & Fluid Flow.

[44]  Omid Ali Akbari,et al.  CFD analysis of thermal and hydrodynamic characteristics of hybrid nanofluid in a new designed sinusoidal double-layered microchannel heat sink , 2018, Journal of Thermal Analysis and Calorimetry.

[45]  M. Sheikholeslami Numerical modeling of nano enhanced PCM solidification in an enclosure with metallic fin , 2018, Journal of Molecular Liquids.

[46]  Emmanuel C. Nsofor,et al.  Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins , 2018 .

[47]  Omid Ali Akbari,et al.  Investigation of rib's height effect on heat transfer and flow parameters of laminar water-Al2O3 nanofluid in a rib-microchannel , 2016, Appl. Math. Comput..

[48]  Kamaruzzaman Sopian,et al.  Enhance heat transfer for PCM melting in triplex tube with internal-external fins , 2013 .

[49]  S. Saha,et al.  Successive solidification and constrained remelting of n-octadecance in a rectangular enclosure: Experimental and numerical study , 2022, International Journal of Thermal Sciences.