Primary signal: Ecological and environmental factors—Report from Working Group 2
暂无分享,去创建一个
S. Wakeham | M. Altabet | J. Volkman | P. Weaver | G. Versteegh | J. Bijma | M. Conte | H. Kinkel | G. Versteegh | J. Volkman | Maureen H. Conte | Philip Pe Weaver
[1] U. Riebesell,et al. The effects of varying CO2 concentration on lipid composition and carbon isotope fractionation in Emiliania huxleyi , 2000 .
[2] S. Neuer,et al. Seasonal and interannual variation of coccolithophore fluxes and species composition in sediment traps north of Gran Canaria (29°N 15°W) , 2000 .
[3] R. Schneider,et al. Mid-chain diols and keto-ols in se atlantic sediments: a new tool for tracing past sea surface water masses? , 2000 .
[4] H. Okada,et al. Environmental control on the biogeography of modern coccolithophores in the southeastern Indian Ocean offshore of Western Australia , 2000 .
[5] H. Kinkel,et al. Coccolithophores in the equatorial Atlantic Ocean: response to seasonal and Late Quaternary surface water variability , 2000 .
[6] B. Edvardsen,et al. Phylogenetic reconstructions of the Haptophyta inferred from 18S ribosomal DNA sequences and available morphological data , 2000 .
[7] J. Bishop,et al. Influence of nutrients on carbon isotope fractionation by natural populations of Prymnesiophyte algae in NE Pacific , 1999 .
[8] Jörg Bollmann,et al. Determination of absolute coccolith abundances in deep-sea sediments by spiking with microbeads and spraying (SMS-method) , 1999 .
[9] R. Bidigare,et al. Iron-stimulated changes in 13C fractionation and export by equatorial Pacific phytoplankton: Toward a paleogrowth rate proxy , 1999 .
[10] Pagani,et al. Late miocene atmospheric CO(2) concentrations and the expansion of C(4) grasses , 1999, Science.
[11] C. Pelejero,et al. C37 alkenone measurements of sea surface temperature in the Gulf of Lions (NW Mediterranean) , 1999 .
[12] H. Kawahata,et al. Depth ranges of alkenone production in the central Pacific Ocean , 1999 .
[13] F. Abrantes,et al. Water column and recent sediment data on diatoms and coccolithophorids, off Portugal, confirm sedime , 1999 .
[14] M. Denis,et al. The C37 alkenone record of seawater temperature during seasonal thermocline stratification , 1999 .
[15] E. Cortijo,et al. Precessional forcing of productivity in the North Atlantic Ocean , 1998 .
[16] H. Thierstein,et al. Global dominance of Gephyrocapsa coccoliths in the Late Pleistocene: Selective dissolution, evolution, or global environmental change? , 1998 .
[17] T. Herbert,et al. Depth and seasonality of alkenone production along the California Margin inferred from a core top transect , 1998 .
[18] C. Jeandel,et al. Hydrocarbons, sterols and alkenones in sinking particles in the Indian Ocean sector of the Southern Ocean , 1998 .
[19] A. Rosell‐Melé,et al. Calibration of the alkenone paleotemperature index U37K′ based on core-tops from the eastern South Atlantic and the global ocean (60°N-60°S) , 1998 .
[20] J. Duinker,et al. Seasonal variability of the long-chain alkenone flux and the effect on the U37k'-index in the Norwegian Sea , 1998 .
[21] P. Hargraves,et al. An effect of dissolved nutrient concentrations on alkenone‐based temperature estimates , 1998 .
[22] R. Bidigare,et al. Does growth rate affect ketone unsaturation and intracellular carbon isotopic variability in Emiliania huxleyi , 1998 .
[23] R. Schneider,et al. Alkenone and coccolithophorid species changes in late Quaternary sediments from the Walvis Ridge: Implications for the alkenone paleotemperature method , 1997 .
[24] J. D. Leeuw,et al. Potential palaeoenvironmental information of C24 to C36 mid-chain diols, keto-ols and mid-chain hydroxy fatty acids; a critical review , 1997 .
[25] H. Andruleit. Coccolithophore fluxes in the Norwegian-Greenland Sea: Seasonality and assemblage alterations , 1997 .
[26] J. Volkman,et al. Alkenones and alkenes in surface waters and sediments of the Southern Ocean: Implications for paleotemperature estimation in polar regions , 1997 .
[27] D. Purdie,et al. Increase of PCO2 during blooms of Emiliania huxleyi: Theoretical considerations on the asymmetry between acquisition of HCO3‐ and respiration of free CO2 , 1997 .
[28] Jörg Bollmann,et al. Morphology and biogeography of Gephyrocapsa coccoliths in Holocene sediments , 1997 .
[29] M. Sicre,et al. Evaluation of long-chain alkenones as paleo-temperature indicators in the Mediterranean Sea , 1997 .
[30] E. Buitenhuis,et al. Trends in inorganic and organic carbon in a bloom of Emiliania huxleyi in the North Sea , 1996 .
[31] Toby Tyrrell,et al. A modelling study of Emiliania huxleyi in the NE atlantic , 1996 .
[32] T. Tyrrell,et al. Importance of light for the formation of algal blooms by Emiliania huxleyi , 1996 .
[33] M. Sarnthein,et al. ATLANTIC CORE-TOP CALIBRATION OF THE U37K INDEX AS A SEA-SURFACE PALAEOTEMPERATURE INDICATOR , 1995 .
[34] G. Eglinton,et al. LIPID BIOMARKER DIVERSITY IN THE COCCOLITHOPHORID EMILIANIA HUXLEYI (PRYMNESIOPHYCEAE) AND THE RELATED SPECIES GEPHYROCAPSA OCEANICA 1 , 1995 .
[35] S. Blackburn,et al. Alkenones in Gephyrocapsa oceanica: Implications for studies of paleoclimate , 1995 .
[36] J. Matthiessen,et al. Plankton in the Norwegian-Greenland Sea: from living communities to sediment assemblages —an actualistic approach , 1995 .
[37] M. S. Finch,et al. Impact of a coccolithophorid bloom on dissolved carbon dioxide in sea water enclosures in a Norwegian fjord , 1994 .
[38] M. Veldhuis,et al. The 1992 Norwegian Emiliania huxleyi experiment. An overview , 1994 .
[39] J. Egge,et al. Blooms of phytoplankton including Emiliania huxleyi (Haptophyta). Effects of nutrient supply in different N : P ratios , 1994 .
[40] D. L. Aksnes,et al. Representation of Emiliania huxleyi in phytoplankton simulation models. A first approach , 1994 .
[41] G. Eglinton,et al. Primary production of lipid biomarker compounds by Emiliania huxleyi. Results from an experimental mesocosm study in fjords of southwestern Norway , 1994 .
[42] R. Wollast. The relative importance of biomineralization and dissolution of CaCO3 in the global carbon cycle , 1994 .
[43] J. Hayes,et al. Photosynthetic fractionation of 13C and concentrations of dissolved CO2 in the central equatorial Pacific during the last 255,000 years. , 1994, Paleoceanography.
[44] C. Brown,et al. Coccolithophorid blooms in the global ocean , 1994 .
[45] M. S. Finch,et al. The impact of a coccolithophore bloom on oceanic carbon uptake in the northeast Atlantic during summer 1991 , 1994 .
[46] M. S. Finch,et al. A biogeochemical study of the coccolithophore, Emiliania huxleyi, in the North Atlantic , 1993 .
[47] G. Eglinton,et al. Alkenone and alkenoate distributions within the euphotic zone of the eastern North Atlantic: correlation with production temperature , 1993 .
[48] F. Prahl,et al. A biomarker perspective on prymnesiophyte productivity in the northeast pacific ocean , 1993 .
[49] P. Monteiro,et al. Distribution and malformation of living coccolithophores in the northern Benguela upwelling system off Namibia , 1993 .
[50] Michael Knappertsbusch,et al. A model system approach to biological climate forcing : The example of Emiliania huxleyi , 1993 .
[51] J. Volkman,et al. Calibration of alkenone unsaturation ratios (Uk'37) for paleotemperature estimation in cold polar waters , 1993 .
[52] G. Eglinton,et al. Long-chain alkenones and alkyl alkenoates as palaeotemperature indicators: their production, flux and early sedimentary diagenesis in the Eastern North Atlantic , 1992 .
[53] G. Cadée,et al. Phaeocystis blooms and eutrophication of the continental coastal zones of the North Sea , 1992 .
[54] L. Brand. Minimum iron requirements of marine phytoplankton and the implications for the biogeochemical control of new production , 1991 .
[55] W. Balch,et al. Biological and optical properties of mesoscale coccolithophore blooms in the Gulf of Maine , 1991 .
[56] S. Brassell,et al. Long-chain alkenones and alkyl alkenoates and the fossil coccolith record of marine sediments , 1990 .
[57] A. Mcintyre,et al. Precessional Forcing of Nutricline Dynamics in the Equatorial Atlantic , 1990, Science.
[58] J. Young. Size variation of Neogene Reticulofenestra coccoliths from Indian Ocean DSDP Cores , 1990, Journal of Micropalaeontology.
[59] D. Kroon,et al. PHYTOPLANKTON AND FORAMINIFERAL FREQUENCIES IN NORTHERN INDIAN-OCEAN AND RED-SEA SURFACE WATERS , 1989 .
[60] Laurel A Muehlhausen,et al. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions , 1988 .
[61] S. Gartner. Paleoceanography of the mid-Pleistocene , 1988 .
[62] S. Brassell,et al. Alkenones in Cretaceous black shales, Blake-Bahama Basin, western North Atlantic , 1986 .
[63] S. Brassell,et al. Long chain (n-C37–C39) alkenones in the Prymnesiophyceae. Distribution of alkenones and other lipids and their taxonomic significance , 1984 .
[64] Pinxian Wang,et al. Calcareous nannoplankton in surface sediments of the East China Sea , 1983 .
[65] C. Samtleben. Die Evolution der Coccolithophoriden-GattungGephyrocapsa nach Befunden im Atlantik , 1980 .
[66] B. Molfino,et al. Global synchroneity of late Quaternary coccolith datum levels Validation by oxygen isotopes , 1977 .
[67] C. Krebs. Ecology: The Experimental Analysis of Distribution and Abundance , 1973 .
[68] H. Okada,et al. The distribution of oceanic coccolithophorids in the Pacific , 1973 .
[69] A. Carlucci,et al. VITAMIN PRODUCTION AND UTILIZATION BY PHYTOPLANKTON IN MIXED CULTURE 1 , 1970 .
[70] A. Mcintyre. Coccoliths as Paleoclimatic Indicators of Pleistocene Glaciation , 1967, Science.
[71] A. Broerse,et al. Coccolithophore export production, species composition, and coccolith-CaCO3 fluxes in the NE Atlantic (34°N 21°W and 48°N 21°W) , 2000 .
[72] P. Ziveri,et al. Calculation of coccolith volume and its use in calibration of carbonate flux estimates , 2000 .
[73] A. Broerse,et al. The fate of coccoliths at 48°N 21°W, Northeastern Atlantic , 2000 .
[74] M. Estrada,et al. Spatio-temporal variability of the winter phytoplankton distribution across the Catalan and North Balearic fronts (NW Mediterranean) , 1999 .
[75] H. Kinkel,et al. Coccolithophores as Indicators of Ocean Water Masses, Surface-Water Temperature, and Paleoproductivity — Examples from the South Atlantic , 1999 .
[76] R. Schneider,et al. Alkenone δ13C as a Proxy for PastPCO2 in Surface Waters: Results from the Late Quaternary Angola Current , 1999 .
[77] R. Harris,et al. Genetic and physiological influences on the alkenone/alkenoate versus growth temperature relationship in Emiliania huxleyi and Gephyrocapsa oceanica , 1998 .
[78] K. L. Hanson,et al. Effect of Phytoplankton Cell Geometry on Carbon Isotopic Fractionation , 1998 .
[79] G. Eglinton,et al. Coccolith and alkenone stratigraphy and palaeoceanography at an upwelling site off NW Africa (ODP 658C) during the last 130,000 years , 1996 .
[80] A. Winter,et al. Biogeography of living coccolithophores in ocean waters , 1994 .
[81] C. Brownlee,et al. Carbon dioxide availability, intracellular pH and growth rate of the coccolithophore Emiliania huxleyi , 1994 .
[82] N. Nimer,et al. Dissolved inorganic carbon utilization in relation to calcite production in Emiliania huxleyi (Lohmann) Kamptner , 1993 .
[83] A. Pujos. Calcareous nannofossils of Plio-Pleistocene sediments from the northwestern margin of tropical Africa , 1992, Geological Society, London, Special Publications.
[84] E. M. Hulburt. Description of phytoplankton and nutrient in spring in the western North Atlantic Ocean , 1990 .
[85] S. Gorshkov,et al. World ocean atlas , 1976 .
[86] R. Chester. Chapter 34 – The Geochemistry of Deep-sea Sediments , 1976 .
[87] C. W. Haskins. Revision of the ostracode genus Trachyleberidea Bowen , 1963 .
[88] J. Evans. The “Quaternary.” , 1907, Nature.