The benefits of relaxing punctuality

Abstract : The most natural, compositional way of modeling real time systems uses a dense domain for time. The satisfiability of real time constraints that are capable of expressing punctual it in this model is, however, known to be undecidable. The authors introduce a temporal language that can constrain the time difference between events only with finite (yet arbitrary) precision and show the resulting logic to be EXPACE-complete. This result allows the authors to develop an algorithm for the verification of timing properties of real time systems with a dense semantics.

[1]  Amir Pnueli,et al.  Explicit clock temporal logic , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[2]  Rajeev Alur,et al.  Model-Checking in Dense Real-time , 1993, Inf. Comput..

[3]  Amir Pnueli,et al.  Propositional Dynamic Logic of Nonregular Programs , 1983, J. Comput. Syst. Sci..

[4]  Jonathan S. Ostroff,et al.  Temporal logic for real-time systems , 1989 .

[5]  Thomas A. Henzinger,et al.  Logics and Models of Real Time: A Survey , 1991, REX Workshop.

[6]  KoymansRon Specifying real-time properties with metric temporal logic , 1990 .

[7]  Thomas A. Henzinger,et al.  Real-Time Logics: Complexity and Expressiveness , 1993, Inf. Comput..

[8]  Amir Pnueli,et al.  Checking that finite state concurrent programs satisfy their linear specification , 1985, POPL.

[9]  Wolfgang Thomas,et al.  Automata on Infinite Objects , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[10]  Aloysius K. Mok,et al.  Safety analysis of timing properties in real-time systems , 1986, IEEE Transactions on Software Engineering.

[11]  Harry R. Lewis,et al.  A logic of concrete time intervals , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[12]  A. Prasad Sistla,et al.  Quantitative Temporal Reasoning , 1990, CAV.

[13]  Thomas A. Henzinger,et al.  Real-time logics: complexity and expressiveness , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.

[14]  Zohar Manna,et al.  The Temporal Logic of Reactive and Concurrent Systems , 1991, Springer New York.

[15]  A. Prasad Sistla,et al.  The complexity of propositional linear temporal logics , 1982, STOC '82.

[16]  Edmund M. Clarke,et al.  Symbolic Model Checking: 10^20 States and Beyond , 1990, Inf. Comput..

[17]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[18]  Richard E. Ladner,et al.  Propositional Dynamic Logic of Regular Programs , 1979, J. Comput. Syst. Sci..