Classification of semifields of order 64
暂无分享,去创建一个
[1] Irvin Roy Hentzel,et al. Primitivity of Finite semifields with 64 and 81 Elements , 2007, Int. J. Algebra Comput..
[2] Leonard Eugene Dickson. Linear algebras in which division is always uniquely possible , 1906 .
[3] A. Adrian Albert,et al. Generalized twisted fields. , 1961 .
[4] A. Calderbank,et al. Z4‐Kerdock Codes, Orthogonal Spreads, and Extremal Euclidean Line‐Sets , 1997 .
[5] John J. Cannon,et al. The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..
[6] A. A. Albert,et al. On nonassociative division algebras , 1952 .
[7] B. David Saunders,et al. Efficient matrix rank computation with application to the study of strongly regular graphs , 2007, ISSAC '07.
[8] A. Adrian Albert. Finite noncommutative division algebras , 1958 .
[9] Erwin Kleinfeld. Techniques for Enumerating Veblen-Wedderburn Systems , 1960, JACM.
[10] Norman L. Johnson,et al. 8 Semifield Planes of Order 82 , 1990, Discret. Math..
[11] Semifield Planes of Order 81 , 2008 .
[12] M. Hall. The Theory Of Groups , 1959 .
[13] D. Knuth. Finite semifields and projective planes , 1965 .
[14] G. Menichetti. Algebre tridimensionali su un campo di Galois , 1973 .
[15] Minerva Cordero,et al. A survey of finite semifields , 1999, Discret. Math..
[16] William M. Kantor,et al. Commutative semifields and symplectic spreads , 2003 .
[17] G. Wene. On the multiplicative structure of finite division rings , 1991 .
[18] Ignacio F. Rúa,et al. Symplectic spread-based generalized Kerdock codes , 2007, Des. Codes Cryptogr..
[19] W. Kantor,et al. Symplectic semifield planes and ℤ₄–linear codes , 2003 .
[20] Giampaolo Menichetti. On a Kaplansky conjecture concerning three-dimensional division algebras over a finite field , 1977 .