Definable decompositions for graphs of bounded linear cliquewidth

We prove that for every positive integer k, there exists an MSO1-transduction that given a graph of linear cliquewidth at most k outputs, nondeterministically, some clique decomposition of the graph of width bounded by a function of k. A direct corollary of this result is the equivalence of the notions of CMSO1-definability and recognizability on graphs of bounded linear cliquewidth.

[1]  Sang-il Oum,et al.  Rank-width and vertex-minors , 2005, J. Comb. Theory, Ser. B.

[2]  Bruno Courcelle,et al.  Upper bounds to the clique width of graphs , 2000, Discret. Appl. Math..

[3]  Manfred Kufleitner The Height of Factorization Forests , 2008, MFCS.

[4]  Bruno Courcelle,et al.  Linear Time Solvable Optimization Problems on Graphs of Bounded Clique-Width , 2000, Theory of Computing Systems.

[5]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[6]  Michal Pilipczuk,et al.  Optimizing Tree Decompositions in MSO , 2017, STACS.

[7]  Paul D. Seymour,et al.  Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.

[8]  Pinar Heggernes,et al.  Graphs of linear clique-width at most 3 , 2011, Theor. Comput. Sci..

[9]  Bruno Courcelle,et al.  The monadic second-order logic of graphs, II: Infinite graphs of bounded width , 1988, Mathematical systems theory.

[10]  Mamadou Moustapha Kanté,et al.  Linear rank-width and linear clique-width of trees , 2015, Theor. Comput. Sci..

[11]  Pinar Heggernes,et al.  Graphs of linear clique-width at most 3 , 2008, Theor. Comput. Sci..

[12]  Egon Wanke,et al.  k-NLC Graphs and Polynomial Algorithms , 1994, Discret. Appl. Math..

[13]  Imre Simon Factorization Forests of Finite Height , 1990, Theor. Comput. Sci..

[14]  Pinar Heggernes,et al.  Characterising the linear clique-width of a class of graphs by forbidden induced subgraphs , 2012, Discret. Appl. Math..

[15]  Egon Wanke,et al.  On the relationship between NLC-width and linear NLC-width , 2005, Theor. Comput. Sci..

[16]  Bruno Courcelle,et al.  Graph Structure and Monadic Second-Order Logic - A Language-Theoretic Approach , 2012, Encyclopedia of mathematics and its applications.

[17]  Michal Pilipczuk,et al.  Definability equals recognizability for graphs of bounded treewidth * , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).