Stokes Complexes and the Construction of Stable Finite Elements with Pointwise Mass Conservation

Two families of conforming finite elements for the two-dimensional Stokes problem are developed, guided by two discrete smoothed de Rham complexes, which we coin “Stokes complexes.” We show that the finite element pairs are inf-sup stable and also provide pointwise mass conservation on very general triangular meshes.

[1]  Joachim Schoberl,et al.  A uniform inf--sup condition with applications to preconditioning , 2012, 1201.1513.

[2]  Douglas N. Arnold,et al.  Quadratic velocity/linear pressure Stokes elements , 1992 .

[3]  Michael Neilan,et al.  Conforming and divergence-free Stokes elements on general triangular meshes , 2013, Math. Comput..

[4]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[5]  Maxim A. Olshanskii,et al.  Grad–div stabilization and subgrid pressure models for the incompressible Navier–Stokes equations , 2009 .

[6]  Xuecheng Tai,et al.  A discrete de Rham complex with enhanced smoothness , 2006 .

[7]  M. Fortin,et al.  Finite Elements for the Stokes Problem , 2008 .

[8]  Alexander Linke,et al.  Collision in a cross-shaped domain - A steady 2d Navier-Stokes example demonstrating the importance of mass conservation in CFD , 2009 .

[9]  M. Fortin,et al.  A stable finite element for the stokes equations , 1984 .

[10]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[11]  Daniele Boffi,et al.  Local Mass Conservation of Stokes Finite Elements , 2012, J. Sci. Comput..

[12]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[13]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[14]  L. R. Scott,et al.  Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials , 1985 .

[15]  Guido Kanschat,et al.  A Note on Discontinuous Galerkin Divergence-free Solutions of the Navier–Stokes Equations , 2007, J. Sci. Comput..

[16]  Leo G. Rebholz,et al.  A Connection Between Scott-Vogelius and Grad-Div Stabilized Taylor-Hood FE Approximations of the Navier-Stokes Equations , 2011, SIAM J. Numer. Anal..

[17]  Thomas J. R. Hughes,et al.  Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations , 2013, J. Comput. Phys..

[18]  Michael Vogelius,et al.  A right-inverse for the divergence operator in spaces of piecewise polynomials , 1983 .

[19]  Maxim A. Olshanskii,et al.  Grad-div stablilization for Stokes equations , 2003, Math. Comput..

[20]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[21]  Bernardo Cockburn,et al.  Hybridized globally divergence-free LDG methods. Part I: The Stokes problem , 2005, Math. Comput..

[22]  Xue-Cheng Tai,et al.  A Robust Finite Element Method for Darcy-Stokes Flow , 2002, SIAM J. Numer. Anal..

[23]  C. Bernardi,et al.  Analysis of some finite elements for the Stokes problem , 1985 .

[24]  D. W. Scharpf,et al.  The TUBA Family of Plate Elements for the Matrix Displacement Method , 1968, The Aeronautical Journal (1968).

[25]  John A. Evans,et al.  ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE STEADY NAVIER–STOKES EQUATIONS , 2013 .