Energy barrier and (cid:2) -convergence in the d -dimensional Cahn–Hilliard equation

We study the d-dimensional Cahn-Hilliard equation on the flat torus in a parameter regime in which the system size is large and the mean value is close—but not too close—to -1. We are particularly interested in a quantitative description of the energy landscape in the case in which the uniform state is a local but not global energy minimizer. In this setting, we derive a sharp leading order estimate of the size of the energy barrier surrounding the uniform state. A sharp interface version of the proof leads to a Γ-limit of the rescaled energy gap between a given function and the uniform state.

[1]  Kevin Zumbrun,et al.  Connectivity of Phase Boundaries in Strictly Convex Domains , 1998 .

[2]  Matthias Winter,et al.  Stationary solutions for the Cahn-Hilliard equation , 1998 .

[3]  M. Gurtin,et al.  Structured phase transitions on a finite interval , 1984 .

[4]  P. Bates,et al.  Equilibria with Many Nuclei for the Cahn–Hilliard Equation , 2000 .

[5]  P. Rabinowitz Minimax methods in critical point theory with applications to differential equations , 1986 .

[6]  Maria G. Reznikoff Rare Events in Finite and Infinite Dimensions , 2004 .

[7]  Deterministic equivalent for the Allen-Cahn energy of a scaling law in the Ising model , 2006 .

[8]  Tiejun Li,et al.  Nucleation Rate Calculation for the Phase Transition of Diblock Copolymers under Stochastic Cahn-Hilliard Dynamics , 2013, Multiscale Model. Simul..

[9]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[10]  J. Serrin,et al.  Extensions of the mountain pass theorem , 1984 .

[11]  Pingwen Zhang,et al.  NUMERICAL STUDY FOR THE NUCLEATION OF ONE-DIMENSIONAL STOCHASTIC CAHN-HILLIARD DYNAMICS ∗ , 2012 .

[12]  W. Ni,et al.  On the shape of least‐energy solutions to a semilinear Neumann problem , 1991 .

[13]  Juncheng Wei,et al.  On the stationary Cahn-Hilliard equation bubble solutions , 1998 .

[14]  Frank Morgan,et al.  Some Sharp Isoperimetric Theorems for Riemannian Manifolds , 2000 .

[15]  P. Sternberg The effect of a singular perturbation on nonconvex variational problems , 1988 .

[16]  Marek Biskup,et al.  Critical Region for Droplet Formation in the Two-Dimensional Ising Model , 2003 .

[17]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[18]  Marek Biskup,et al.  On the formation/dissolution of equilibrium droplets , 2002 .

[19]  Peter W. Bates,et al.  The Dynamics of Nucleation for the Cahn-Hilliard Equation , 1993, SIAM J. Appl. Math..

[20]  L. Modica The gradient theory of phase transitions and the minimal interface criterion , 1987 .

[21]  D. Blavette,et al.  Minimum free-energy pathway of nucleation. , 2011, The Journal of chemical physics.

[22]  Yoshihiro Tonegawa,et al.  Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory , 2000 .

[23]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[24]  Morton E. Gurtin,et al.  On the structure of equilibrium phase transitions within the gradient theory of fluids , 1988 .

[25]  E. N. Dancer,et al.  Multi-spike stationary solutions of the Cahn-Hilliard equation in higher-dimension and instability , 1999, Advances in Differential Equations.