Towards the definition of a benchmark for low Reynolds number propeller aeroacoustics

Abstract Experimental and numerical results of a propeller of 0.3 m diameter operated at 5000 RPM and axial velocity ranging from 0 to 20 m/s and advance ratio ranging from 0 to 0.8 are presented as a preliminary step towards the definition of a benchmark configuration for low Reynolds number propeller aeroacoustics. The corresponding rotational tip Mach number is 0.23 and the Reynolds number based on the blade sectional chord and flow velocity varies from about 46000 to 106000 in the operational domain and in the 30% to 100% blade radial range. Force and noise measurements carried out in a low-speed semi-anechoic wind-tunnel are compared to scale-resolved CFD and low-fidelity numerical predictions. Results identify the experimental and numerical challenges of the benchmark and the relevance of fundamental research questions related to transition and other low Reynolds number effects.

[1]  Damiano Casalino,et al.  Rotorcraft blade-vortex interaction noise prediction using the Lattice-Boltzmann method , 2019, Aerospace Science and Technology.

[2]  S. Orszag,et al.  Expanded analogy between Boltzmann kinetic theory of fluids and turbulence , 2004, Journal of Fluid Mechanics.

[3]  Richard D. Sandberg,et al.  Direct Numerical Simulation of the Self-Noise Radiated by the Installed Controlled-Diffusion Airfoil at Transitional Reynolds Number , 2018, 2018 AIAA/CEAS Aeroacoustics Conference.

[4]  M. Kamruzzaman,et al.  A Semi-Empirical Surface Pressure Spectrum Model for Airfoil Trailing-Edge Noise Prediction , 2015 .

[5]  Yannick Rozenberg,et al.  Modélisation analytique du bruit aérodynamique à large bande des machines tournantes : utilisation de calculs moyennés de mécanique des fluides , 2007 .

[6]  Ryan McKay,et al.  Multirotor Unmanned Aerial System Propeller Noise Caused by Unsteady Blade Motion , 2019, 25th AIAA/CEAS Aeroacoustics Conference.

[7]  X. Yuan,et al.  Kinetic theory representation of hydrodynamics: a way beyond the Navier–Stokes equation , 2006, Journal of Fluid Mechanics.

[8]  L. A. Viterna,et al.  Fixed pitch rotor performance of large horizontal axis wind turbines , 1982 .

[9]  Nikolas S. Zawodny,et al.  Effects of flow recirculation on unmanned aircraft system (UAS) acoustic measurements in closed anechoic chambers. , 2019, The Journal of the Acoustical Society of America.

[10]  Seongkyu Lee,et al.  Empirical Wall-Pressure Spectral Modeling for Zero and Adverse Pressure Gradient Flows , 2018 .

[11]  Damiano Casalino,et al.  Tonal and Broadband Noise Calculations for Aeroacoustic Optimization of a Pusher Propeller , 2010 .

[12]  M. Selig,et al.  Post Stall Propeller Behavior at Low Reynolds Numbers , 2008 .

[13]  Franck Perot,et al.  Direct aeroacoustics simulation of automotive engine cooling fan system: effect of upstream geometry on broadband noise , 2014 .

[14]  Patricia Ventura Diaz,et al.  High-Fidelity Computational Aerodynamics of Multi-Rotor Unmanned Aerial Vehicles , 2018 .

[15]  Stéphane Moreau,et al.  Wall-Pressure Spectral Model Including the Adverse Pressure Gradient Effects , 2012 .

[16]  Damiano Casalino,et al.  Stochastic Method for Airfoil Self-Noise Computation in Frequency Domain , 2011 .

[17]  Damiano Casalino,et al.  Community Noise of Urban Air Transportation Vehicles , 2019, AIAA Scitech 2019 Forum.

[18]  James W. Gregory,et al.  Blade Element Momentum Modeling of Low-Re Small UAS Electric Propulsion Systems , 2015 .

[19]  D. Casalino,et al.  Fan Tonal and Broadband Noise Simulations at Transonic Operating Conditions Using Lattice-Boltzmann Methods , 2018, 2018 AIAA/CEAS Aeroacoustics Conference.

[20]  Brenda S. Henderson,et al.  Electric Motor Noise for Small Quadcopters: Part II - Source Characteristics and Predictions , 2018, 2018 AIAA/CEAS Aeroacoustics Conference.

[21]  M. Drela XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils , 1989 .

[22]  D. Ragni,et al.  Impingement of a propeller-slipstream on a leading edge with a flow-permeable insert: A computational aeroacoustic study , 2018, International Journal of Aeroacoustics.

[23]  D. Pasquale,et al.  A selective review of CFD transition models , 2009 .

[24]  Philippe R. Spalart,et al.  Synthetic Turbulence Generators for RANS-LES Interfaces in Zonal Simulations of Aerodynamic and Aeroacoustic Problems , 2014 .

[25]  D. Casalino,et al.  Numerical and Experimental Investigation of Flow Confinement Effects on UAV Rotor Noise , 2019, 25th AIAA/CEAS Aeroacoustics Conference.

[26]  Towards the definition of a benchmark for low Reynolds number propeller aeroacoustics , 2021, Journal of Physics: Conference Series.

[27]  Sukumar Chakravarthy,et al.  Interfacing Statistical Turbulence Closures with Large-Eddy Simulation , 2004 .

[28]  David P. Lockard,et al.  AN EFFICIENT, TWO-DIMENSIONAL IMPLEMENTATION OF THE FFOWCS WILLIAMS AND HAWKINGS EQUATION , 2000 .

[29]  Pieter Sijtsma,et al.  CLEAN Based on Spatial Source Coherence , 2007 .

[30]  O. Gur,et al.  Comparison between blade-element models of propellers , 2008, The Aeronautical Journal (1968).

[31]  M. Giles,et al.  Viscous-inviscid analysis of transonic and low Reynolds number airfoils , 1986 .

[32]  Damiano Casalino,et al.  Simulation of Helicopter Community Noise in Complex Urban Geometry , 2011 .

[33]  W. A. Timmer,et al.  Roughness Sensitivity Considerations for Thick Rotor Blade Airfoils , 2003 .

[34]  Michel Roger,et al.  Rotating Blade Trailing-Edge Noise: Experimental Validation of Analytical Model , 2010 .

[35]  M. Goody Empirical Spectral Model of Surface Pressure Fluctuations , 2004 .

[36]  Marios Kotsonis,et al.  Aeroacoustic design and characterization of the 3D-printed, open-jet, anechoic wind tunnel of Delft University of Technology , 2020 .

[37]  Damiano Casalino,et al.  Comparison of computational and experimental microphone array results for an 18% scale aircraft model , 2017, International journal of aeroacoustics.

[38]  D. Casalino An advanced time approach for acoustic analogy predictions , 2003 .

[39]  D. Casalino,et al.  Turbofan Broadband Noise Prediction Using the Lattice Boltzmann Method , 2016 .

[40]  G. P. Succi,et al.  The prediction of helicopter rotor discrete frequency noise , 1982 .

[41]  S. Yarusevych,et al.  Laminar separation bubble development on an airfoil emitting tonal noise , 2015, Journal of Fluid Mechanics.

[42]  S. Orszag,et al.  Renormalization group analysis of turbulence. I. Basic theory , 1986 .

[43]  D. Ragni,et al.  Aeroacoustic study of a wavy stator leading edge in a realistic fan/OGV stage , 2019, Journal of Sound and Vibration.

[44]  Michel Roger,et al.  Back-scattering correction and further extensions of amiet's trailing-edge noise model. Part 1: theory , 2005 .