Dynamic coefficients and stability analysis of finite-length journal bearings considering approximate analytical solutions of the Reynolds equation

Abstract The paper presents linearized coefficients for finite-length journal bearings based on the HD forces with multiplicative correction polynomials applied to the infinitely short and the infinitely long solutions under the assumption of π-film boundary condition. Based on the linear theory, stability thresholds and their dependence on the length-to-diameter ratio are investigated. Moreover, using the numerical continuation method the change of the generalized Hopf bifurcation which separates regions with subcritical and supercritical Hopf is documented. All results are compared with those of the solution obtained using the finite differences method.

[1]  G. Adiletta An insight into the dynamics of a rigid rotor on two-lobe wave squeeze film damper , 2017 .

[2]  Minel J. Braun,et al.  Nonlinear Effects in a Plain Journal Bearing: Part 2—Results , 1991 .

[3]  Aydin Boyaci Numerical Continuation Applied to Nonlinear Rotor Dynamics , 2016 .

[4]  J. W. Lund,et al.  Review of the Concept of Dynamic Coefficients for Fluid Film Journal Bearings , 1987 .

[6]  R. Holmes,et al.  The Vibration of a Rigid Shaft on Short Sleeve Bearings , 1960 .

[7]  O. Reynolds IV. On the theory of lubrication and its application to Mr. Beauchamp tower’s experiments, including an experimental determination of the viscosity of olive oil , 1886, Philosophical Transactions of the Royal Society of London.

[8]  Rajiv Tiwari,et al.  Rotor Systems: Analysis and Identification , 2017 .

[9]  L. Quinzani,et al.  Approximate analytical solution to Reynolds equation for finite length journal bearings , 2011 .

[10]  R. Buckholz,et al.  The Accuracy of Short Bearing Theory for Newtonian Lubricants , 1986 .

[11]  M. J. Braun,et al.  Nonlinear Effects in a Plain Journal Bearing: Part 1—Analytical Study , 1991 .

[12]  Paul C. Warner Static and Dynamic Properties of Partial Journal Bearings , 1963 .

[13]  B. Sternlicht,et al.  Rotor-Bearing Dynamics With Emphasis on Attenuation , 1962 .

[15]  Agnes Muszynska,et al.  Stability of whirl and whip in rotor/bearing systems , 1988 .

[16]  J. F. Booker Dynamically Loaded Journal Bearings: Mobility Method of Solution , 1965 .

[17]  A. Cameron,et al.  Stability Contours for a Whirling Finite Journal Bearing , 1971 .

[18]  Marcio de Queiroz,et al.  A New Analytic Approximation for the Hydrodynamic Forces in Finite-Length Journal Bearings , 2010 .

[19]  Michael M. Khonsari,et al.  Stability Boundary of Non-Linear Orbits Within Clearance Circle of Journal Bearings , 1993 .

[20]  J. V. Fedor Half sommerfeld approximation for finite journal bearings. , 1963 .

[21]  R. DiPrima Higher Order Approximations in the Asymptotic Solution of the Reynolds Equation for Slider Bearings at High Bearing Numbers , 1969 .

[22]  D. Dini,et al.  A General Finite Volume Method for the Solution of the Reynolds Lubrication Equation with a Mass-Conserving Cavitation Model , 2015, Tribology Letters.

[23]  Erwin Krämer,et al.  Dynamics of Rotors and Foundations , 1993 .

[24]  Jaw-Ren Lin,et al.  Linear stability analysis of rotor-bearing system: couple stress fluid model , 2001 .

[25]  K. Cavalca,et al.  On the Instability Threshold of Journal Bearing Supported Rotors , 2014 .

[26]  Helio Fiori de Castro,et al.  Whirl and whip instabilities in rotor-bearing system considering a nonlinear force model , 2008 .

[27]  Rodrigo Pascual,et al.  Identification of nonlinear dynamic coefficients in plain journal bearings , 2008 .

[28]  Hung Nguyen-Schäfer Rotordynamics of Automotive Turbochargers: Linear and Nonlinear Rotordynamics – Bearing Design – Rotor Balancing , 2012 .

[29]  Mnaouar Chouchane,et al.  Bifurcation of limit cycles in fluid film bearings , 2011 .

[30]  D. Sfyris,et al.  An exact analytical solution of the Reynolds equation for the finite journal bearing lubrication , 2012 .

[31]  Ilmar F. Santos,et al.  Efficient solution of the non-linear Reynolds equation for compressible fluid using the finite element method , 2015 .

[32]  Yu Lie,et al.  Nonlinear dynamic coefficients prediction of journal bearings using partial derivative method , 2012 .

[33]  Harish Hirani,et al.  Dynamically Loaded Finite Length Journal Bearings: Analytical Method of Solution , 1999 .

[34]  Y L Wang,et al.  Approximate analytical model for fluid film force of finite length plain journal bearing , 2012 .

[35]  Dara W. Childs,et al.  Journal bearing impedance descriptions for rotordynamic applications , 1977 .

[36]  E. J. Gunter,et al.  A Finite Length Bearing Correction Factor for Short Bearing Theory , 1980 .

[37]  W. Philipzik Zur hydrodynamischen Theorie der Schmiermittelreibung , 1956 .

[38]  Jerzy T. Sawicki,et al.  A Nonlinear Model for Prediction of Dynamic Coefficients in a Hydrodynamic Journal Bearing , 2004 .

[39]  Mnaouar Chouchane,et al.  Nonlinear stability analysis of long hydrodynamic journal bearings using numerical continuation , 2014 .