Optimal Parallel Algorithms for Testing Isomorphism of Trees and Outerplanar Graphs

We show that isomorphism of trees and outerplanar graphs can be tested in O(log n) time with n/log(n) processors on a CRCW PRAM and in O(log2n) time with n/log2n processors on an EREW PRAM. This gives the first optimal parallel algorithm for the isomorphism testing for a nontrivial class of graphs. We give also an optimal parallel algorithm for the equivalence of expressions.

[1]  Wojciech Rytter,et al.  Efficient parallel algorithms , 1988 .

[2]  Robert E. Tarjan,et al.  An Efficient Parallel Biconnectivity Algorithm , 2011, SIAM J. Comput..

[3]  Marek Karpinski,et al.  Subtree Isomorphism is NC Reducible to Bipartite Perfect Matching , 1989, Inf. Process. Lett..

[4]  Krzysztof Diks,et al.  Testing Isomorphism of Outerplanar Graphs in Parallel , 1988, MFCS.

[5]  Wojciech Rytter,et al.  Optimal Parallel Algorithm for Dynamic Expression Evaluation and Context-Free Recognition , 1989, Inf. Comput..

[6]  Phillip B. Gibbons,et al.  Subtree Isomorphism is in Random NC , 1988 .

[7]  Walter L. Ruzzo On Uniform Circuit Complexity , 1981, J. Comput. Syst. Sci..

[8]  Hans L. Bodlaender,et al.  Polynomial Algorithms for Graph Isomorphism and Chromatic Index on Partial k-Trees , 1988, J. Algorithms.

[9]  Eugene M. Luks,et al.  Isomorphism of graphs of bounded valence can be tested in polynomial time , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[10]  David G. Kirkpatrick,et al.  A Simple Parallel Tree Contraction Algorithm , 1989, J. Algorithms.

[11]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[12]  John H. Reif,et al.  An optimal parallel algorithm for integer sorting , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[13]  Wojciech Rytter,et al.  Optimal Parallel Algorithms For The Recognition And Colouring Outerplanar Graphs (Extended Abstract) , 1989, MFCS.

[14]  Gary L. Miller,et al.  Parallel tree contraction and its application , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).