Tunable and free-form planar optics

The advent of spatial control over the phase and amplitude of light waves has profoundly transformed photonics, enabling major advances in fields from imaging and information technology to biomedical optics. Here we propose a method of deterministic phase-front shaping using a planar thermo-optical module and designed microheaters to locally shape the refractive index distribution. When combined with a genetic algorithm optimization, this SmartLens can produce free-form optical wavefront modifications. Individually, or in arrays, it can generate complex functions based on either pure or combined Zernike polynomials, including lenses or aberration correctors of electrically tunable magnitude. This simple and compact concept complements the existing optical shaping toolbox by offering low-chromatic-aberration, polarization-insensitive and transmission-mode components that can readily be integrated into existing optical systems. Using microheaters and a genetic algorithm optimization, deterministic phase-front shaping through a planar thermo-optical module can be realized, complementing the existing optical shaping toolbox by offering low-chromatic-aberration, polarization-insensitive and transmission-mode components.

[1]  S. Kuiper,et al.  Variable-focus liquid lens for miniature cameras , 2004 .

[2]  T. S. Radhakrishnan Thermal degradation of poly(dimethylsilylene) and poly(tetramethyldisilylene-co-styrene) , 2006 .

[3]  Brahim Lounis,et al.  Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers , 2002, Science.

[4]  M. Levoy,et al.  Light field microscopy , 2006, SIGGRAPH 2006.

[5]  J. F. Algorri,et al.  Tunable liquid crystal multifocal microlens array , 2017, Scientific Reports.

[6]  D. De Rossi,et al.  Bioinspired Tunable Lens with Muscle‐Like Electroactive Elastomers , 2011 .

[7]  Vasudevan Lakshminarayanan,et al.  Zernike polynomials: a guide , 2011 .

[8]  F. Frascella,et al.  Reconfigurable elastomeric graded-index optical elements controlled by light , 2018, Light, science & applications.

[9]  Wei Zhang,et al.  Wafer-scale fabricated thermo-pneumatically tunable microlenses , 2014, Light: Science & Applications.

[10]  Shin‐Tson Wu,et al.  Tunable-focus liquid lens controlled using a servo motor. , 2006, Optics express.

[11]  Fook Siong Chau,et al.  Tunable electromagnetically actuated liquid-filled lens , 2011 .

[12]  Gorachand Ghosh,et al.  Handbook of thermo-optic coefficients of optical materials with applications , 1998 .

[13]  A. K. Agarwal,et al.  Adaptive liquid microlenses activated by stimuli-responsive hydrogels , 2006, Nature.

[14]  H. Rigneault,et al.  Three-dimensional temperature imaging around a gold microwire , 2013 .

[15]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[16]  Songlin Zhuang,et al.  Measurement of lens focal length with Hartmann–Shack wavefront sensor based on 4F system , 2015 .

[17]  A. Rosencwaig,et al.  Detection of thermal waves through optical reflectance , 1985 .

[18]  K. Yokouchi,et al.  Planar hybrid polymer-silica microlenses with tunable beamwidth and focal length , 2004, IEEE Photonics Technology Letters.

[19]  Shin‐Tson Wu,et al.  Adaptive liquid lens actuated by photo-polymer. , 2009, Optics express.

[20]  S. Bernet,et al.  What spatial light modulators can do for optical microscopy , 2011 .

[21]  Hervé Rigneault,et al.  Quantitative absorption spectroscopy of nano-objects , 2012 .

[22]  Hans Zappe,et al.  Tunable solid-body elastomer lenses with electromagnetic actuation. , 2011, Applied optics.

[23]  B. Berge,et al.  Variable focal lens controlled by an external voltage: An application of electrowetting , 2000 .

[24]  H. Rigneault,et al.  Time-harmonic optical heating of plasmonic nanoparticles , 2014 .

[25]  Larry J. Hornbeck,et al.  Deformable-Mirror Spatial Light Modulators , 1990, Optics & Photonics.

[26]  Christos Markos,et al.  Thermo-optic effect of an index guiding photonic crystal fiber with elastomer inclusions , 2011, International Conference on Optical Fibre Sensors.

[27]  Serge Monneret,et al.  Thermal imaging of nanostructures by quantitative optical phase analysis. , 2012, ACS nano.

[28]  L. Paninski,et al.  Simultaneous Multi-plane Imaging of Neural Circuits , 2016, Neuron.

[29]  Paul V. Ruijgrok,et al.  Room-Temperature Detection of a Single Molecule’s Absorption by Photothermal Contrast , 2010, Science.

[30]  K. Neyts,et al.  Multi-electrode tunable liquid crystal lenses with one lithography step. , 2018, Optics letters.

[31]  De-Ying Zhang,et al.  Fluidic adaptive lens with high focal length tunability , 2003 .

[32]  Halina Rubinsztein-Dunlop,et al.  Roadmap on structured light , 2016 .

[33]  Stéphane Holé,et al.  Quantitative thermal imaging by synchronous thermoreflectance with optimized illumination wavelengths , 2001 .

[34]  Guoqiang Li,et al.  Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[35]  Valentina Emiliani,et al.  Three-dimensional spatiotemporal focusing of holographic patterns , 2016, Nature Communications.

[36]  Weijian Yang,et al.  In vivo imaging of neural activity , 2017, Nature Methods.

[37]  Alexander Jesacher,et al.  Colour hologram projection with an SLM by exploiting its full phase modulation range. , 2014, Optics express.

[38]  J. Badoz,et al.  Thermo‐optical spectroscopy: Detection by the ’’mirage effect’’ , 1980 .

[39]  J. Lichtman,et al.  Optical sectioning microscopy , 2005, Nature Methods.

[40]  A. Hiltner,et al.  Tunable polymer lens. , 2008, Optics express.

[41]  Hans Zappe,et al.  Elastomeric lenses with tunable astigmatism , 2013, Light: Science & Applications.

[42]  Romain Quidant,et al.  Fast and Transparent Adaptive Lens Based on Plasmonic Heating , 2015 .

[43]  Alexander Jesacher,et al.  How to use a phase-only spatial light modulator as a color display. , 2015, Optics letters.