Crystal structure and hydrogen storage properties of Ti-V-Mn alloys

[1]  M. Balcerzak Structure and hydrogen storage properties of mechanically alloyed Ti-V alloys , 2017 .

[2]  Ankur Jain,et al.  Development of vanadium based hydrogen storage material: A review , 2017 .

[3]  Seemita Banerjee,et al.  Thermodynamics, kinetics and microstructural evolution of Ti0.43Zr0.07Cr0.25V0.25 alloy upon hydrogenation , 2017 .

[4]  Seemita Banerjee,et al.  Influence of Laves phase on microstructure and hydrogen storage properties of Ti–Cr–V based alloy , 2016 .

[5]  Chaoling Wu,et al.  Hydrogen storage and cyclic properties of (VFe)60(TiCrCo)40-xZrx (0 ≤ x ≤ 2) alloys , 2016 .

[6]  L. Chown,et al.  Influence of Fe on hydrogen storage properties of V-rich ternary alloys , 2016 .

[7]  Daniel Reed,et al.  Ti–V–Mn based metal hydrides for hydrogen compression applications , 2015 .

[8]  T. Meng,et al.  Effects of Cr, Zr, V, Mn, Fe, and Co to the hydride properties of Laves phase-related body-centered-cubic solid solution alloys , 2015 .

[9]  K. Young,et al.  Structural, hydrogen storage, and electrochemical properties of Laves phase-related body-centered-cubic solid solution metal hydride alloys , 2014 .

[10]  Jian-qiu Deng,et al.  Hydrogen storage properties and thermal stability of V35Ti20Cr45 alloy by heat treatment , 2014 .

[11]  Yumiko Nakamura,et al.  Reduction and unusual recovery in the reversible hydrogen storage capacity of V1−xTix during hydrogen cycling , 2014 .

[12]  L. Pickering Ti-V-Mn based metal hydrides for hydrogen storage and compression applications , 2013 .

[13]  R. Hu,et al.  Microstructure and hydrogen storage properties of non-stoichiometric Zr–Ti–V Laves phase alloys , 2013 .

[14]  S. Bharadwaj,et al.  Hydrogen storage properties of Ti2−xCrVMx (M = Fe, Co, Ni) alloys , 2013 .

[15]  Junxian Zhang,et al.  Mechanochemical synthesis of hydrogen storage materials , 2013 .

[16]  T. Maruyama,et al.  Effects of V content on hydrogen storage properties of V–Ti–Cr alloys with high desorption pressure , 2010 .

[17]  Xuezhang Xiao,et al.  Microstructure and hydrogen storage properties of Ti10V84―xFe6Zrx (x = 1―8) alloys , 2010 .

[18]  Lijun Jiang,et al.  Improvement of the hydrogen storage properties of Ti―Cr―V―Fe BCC alloy by Ce addition , 2009 .

[19]  H. Pan,et al.  An improvement on cycling stability of Ti–V–Fe-based hydrogen storage alloys with Co substitution for Ni , 2008 .

[20]  Choong-Nyeon Park,et al.  Effects of B addition on the hydrogen absorption–desorption property of Ti0.32Cr0.43V0.25 alloy , 2008 .

[21]  Yungui Chen,et al.  Hydrogen storage properties of V–Ti–Cr–Fe alloys , 2007 .

[22]  H. Iba,et al.  Hydrogen-absorbing alloys with a large capacity for a new energy carrier , 2002 .