Joint leaf-refinement and ensemble pruning through L1 regularization

[1]  Katharina Morik,et al.  There is no Double-Descent in Random Forests , 2021, ArXiv.

[2]  Mohsen Shahhosseini,et al.  Improved Weighted Random Forest for Classification Problems , 2020, ArXiv.

[3]  Paweł Zyblewski,et al.  Novel clustering-based pruning algorithms , 2020, Pattern Analysis and Applications.

[4]  Sarangapani Jagannathan,et al.  A comprehensive survey on model compression and acceleration , 2020, Artificial Intelligence Review.

[5]  Natalia Gimelshein,et al.  PyTorch: An Imperative Style, High-Performance Deep Learning Library , 2019, NeurIPS.

[6]  Jorge Cabral,et al.  Machine Learning in Resource-Scarce Embedded Systems, FPGAs, and End-Devices: A Survey , 2019, Electronics.

[7]  Pawel Zyblewski,et al.  Clustering-Based Ensemble Pruning and Multistage Organization Using Diversity , 2019, HAIS.

[8]  Hieu Pham,et al.  Optimizing Ensemble Weights and Hyperparameters of Machine Learning Models for Regression Problems , 2019, Machine Learning with Applications.

[9]  C. Faloutsos,et al.  Ensemble Methods , 2019, Machine Learning with Spark™ and Python®.

[10]  Raffaele Perego,et al.  X-CLE a VER: Learning Ranking Ensembles by Growing and Pruning Trees , 2018 .

[11]  Katharina Morik,et al.  Realization of Random Forest for Real-Time Evaluation through Tree Framing , 2018, 2018 IEEE International Conference on Data Mining (ICDM).

[12]  Fabrizio Silvestri,et al.  X-CLEaVER , 2018, ACM Trans. Intell. Syst. Technol..

[13]  Mojtaba Masoudinejad,et al.  Machine Learning Based Indoor Localisation Using Environmental Data in PhyNetLab Warehouse , 2018 .

[14]  Mingliang Xu,et al.  Margin & diversity based ordering ensemble pruning , 2018, Neurocomputing.

[15]  Saurabh Goyal,et al.  Resource-efficient Machine Learning in 2 KB RAM for the Internet of Things , 2017, ICML.

[16]  Bin Fu,et al.  Generalized Ambiguity Decompositions for Classification with Applications in Active Learning and Unsupervised Ensemble Pruning , 2017, AAAI.

[17]  Hanan Samet,et al.  Pruning Filters for Efficient ConvNets , 2016, ICLR.

[18]  Thiago J. M. Moura,et al.  Combining diversity measures for ensemble pruning , 2016, Pattern Recognit. Lett..

[19]  Micha Elsner,et al.  Feature Selection , 2014, Computer Vision, A Reference Guide.

[20]  Erwan Scornet,et al.  A random forest guided tour , 2015, TEST.

[21]  Feiping Nie,et al.  Robust Dictionary Learning with Capped l1-Norm , 2015, IJCAI.

[22]  Jian Sun,et al.  Global refinement of random forest , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[24]  Mehryar Mohri,et al.  Deep Boosting , 2014, ICML.

[25]  Vikas Sindhwani,et al.  Near-separable Non-negative Matrix Factorization with ℓ1 and Bregman Loss Functions , 2013, SDM.

[26]  Sebastian Nowozin,et al.  Decision Jungles: Compact and Rich Models for Classification , 2013, NIPS.

[27]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[28]  N. D. Freitas,et al.  Narrowing the Gap: Random Forests In Theory and In Practice , 2014, ICML.

[29]  Gilles Louppe,et al.  Ensembles on Random Patches , 2012, ECML/PKDD.

[30]  Yang Yu,et al.  Diversity Regularized Ensemble Pruning , 2012, ECML/PKDD.

[31]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[32]  Xindong Wu,et al.  Ensemble pruning via individual contribution ordering , 2010, KDD.

[33]  Gérard Biau,et al.  Analysis of a Random Forests Model , 2010, J. Mach. Learn. Res..

[34]  Giorgio Valentini,et al.  Applications of Supervised and Unsupervised Ensemble Methods , 2009, Applications of Supervised and Unsupervised Ensemble Methods.

[35]  Daniel Hernández-Lobato,et al.  An Analysis of Ensemble Pruning Techniques Based on Ordered Aggregation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  J. Demšar Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[37]  William Nick Street,et al.  Ensemble Pruning Via Semi-definite Programming , 2006, J. Mach. Learn. Res..

[38]  Gonzalo Martínez-Muñoz,et al.  Pruning in ordered bagging ensembles , 2006, ICML.

[39]  Pierre Geurts,et al.  Extremely randomized trees , 2006, Machine Learning.

[40]  Peter Tiño,et al.  Managing Diversity in Regression Ensembles , 2005, J. Mach. Learn. Res..

[41]  V. Koltchinskii,et al.  Empirical margin distributions and bounding the generalization error of combined classifiers , 2002, math/0405343.

[42]  L. Breiman Random Forests , 2001, Encyclopedia of Machine Learning and Data Mining.

[43]  Zoran Obradovic,et al.  Effective pruning of neural network classifier ensembles , 2001, IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222).

[44]  Fabio Roli,et al.  Design of effective multiple classifier systems by clustering of classifiers , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[45]  Tin Kam Ho,et al.  The Random Subspace Method for Constructing Decision Forests , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  Thomas G. Dietterich,et al.  Pruning Adaptive Boosting , 1997, ICML.

[47]  Mohammad Shoyaib,et al.  Introducing Confidence as a Weight in Random Forest , 2019, 2019 International Conference on Robotics,Electrical and Signal Processing Techniques (ICREST).

[48]  Katharina Morik,et al.  Decision Tree and Random Forest Implementations for Fast Filtering of Sensor Data , 2018, IEEE Transactions on Circuits and Systems I: Regular Papers.

[49]  Paolo Missier,et al.  Data Integration in the Life Sciences , 2018, Lecture Notes in Computer Science.

[50]  Y. Freund,et al.  Boosting , 2012 .

[51]  Grigorios Tsoumakas,et al.  An Ensemble Pruning Primer , 2009, Applications of Supervised and Unsupervised Ensemble Methods.

[52]  Claudio Conversano,et al.  Decision Tree Induction , 2009, Encyclopedia of Data Warehousing and Mining.

[53]  Alberto Suárez,et al.  Aggregation Ordering in Bagging , 2004 .

[54]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[55]  Azriel Rosenfeld,et al.  Machine Learning and Data Mining in Pattern Recognition , 2000, Lecture Notes in Computer Science.

[56]  L. Breiman SOME INFINITY THEORY FOR PREDICTOR ENSEMBLES , 2000 .

[57]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[58]  Dirk Van,et al.  Ensemble Methods: Foundations and Algorithms , 2012 .