Provably good moving least squares

We analyze a moving least squares algorithm for reconstructing a surface from point cloud data. Our algorithm defines an implicit function I whose zero set U is the reconstructed surface. We prove that I is a good approximation to the signed distance function of the sampled surface F and that U is geometrically close to and homeomorphic to F. Our proof requires sampling conditions similar to e-sampling, used in Delaunay reconstruction algorithms.

[1]  Tamal K. Dey,et al.  An Adaptive MLS Surface for Reconstruction with Guarantees , 2022 .

[2]  James F. O'Brien,et al.  Shape transformation using variational implicit functions , 1999, SIGGRAPH Courses.

[3]  Marc Alexa,et al.  Approximating and Intersecting Surfaces from Points , 2003, Symposium on Geometry Processing.

[4]  Tamal K. Dey,et al.  Provable surface reconstruction from noisy samples , 2004, SCG '04.

[5]  Jean-Daniel Boissonnat,et al.  Smooth surface reconstruction via natural neighbour interpolation of distance functions , 2000, SCG '00.

[6]  D. Levin,et al.  Mesh-Independent Surface Interpolation , 2004 .

[7]  James F. O'Brien,et al.  Interpolating and approximating implicit surfaces from polygon soup , 2004, SIGGRAPH Courses.

[8]  Helmut Pottmann,et al.  Registration of point cloud data from a geometric optimization perspective , 2004, SGP '04.

[9]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[10]  Marc Alexa,et al.  Computing and Rendering Point Set Surfaces , 2003, IEEE Trans. Vis. Comput. Graph..

[11]  Niloy J. Mitra,et al.  Estimating surface normals in noisy point cloud data , 2003, SCG '03.

[12]  M. Fréchet Sur la distance de deux surfaces , .

[13]  Marc Levoy,et al.  A volumetric method for building complex models from range images , 1996, SIGGRAPH.

[14]  Nina Amenta,et al.  Defining point-set surfaces , 2004, ACM Trans. Graph..

[15]  Marc Alexa,et al.  Progressive point set surfaces , 2003, TOGS.

[16]  Jean-Daniel Boissonnat,et al.  Natural neighbor coordinates of points on a surface , 2001, Comput. Geom..

[17]  Steve Oudot,et al.  Provably Good Surface Sampling and Approximation , 2003, Symposium on Geometry Processing.

[18]  Hans-Peter Seidel,et al.  Multi-level partition of unity implicits , 2003, ACM Trans. Graph..

[19]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[20]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[21]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[22]  James F. O'Brien,et al.  Interpolating and approximating implicit surfaces from polygon soup , 2005, SIGGRAPH Courses.

[23]  Sunghee Choi,et al.  The power crust , 2001, SMA '01.

[24]  S. Osher,et al.  Fast surface reconstruction using the level set method , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[25]  Tamal K. Dey,et al.  Provable surface reconstruction from noisy samples , 2006, Comput. Geom..

[26]  Marshall W. Bern,et al.  Surface Reconstruction by Voronoi Filtering , 1998, SCG '98.

[27]  Alexander Russell,et al.  Computational topology: ambient isotopic approximation of 2-manifolds , 2003, Theor. Comput. Sci..

[28]  Markus H. Gross,et al.  Shape modeling with point-sampled geometry , 2003, ACM Trans. Graph..

[29]  Gert Vegter,et al.  Isotopic approximation of implicit curves and surfaces , 2004, SGP '04.

[30]  Mark A Fleming,et al.  Smoothing and accelerated computations in the element free Galerkin method , 1996 .

[31]  Sunghee Choi,et al.  A simple algorithm for homeomorphic surface reconstruction , 2000, SCG '00.

[32]  Brian Wyvill,et al.  Introduction to Implicit Surfaces , 1997 .

[33]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[34]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[35]  Jean-Daniel Boissonnat,et al.  Isotopic Implicit Surface Meshing , 2004, STOC '04.

[36]  Marc Levoy,et al.  The digital Michelangelo project: 3D scanning of large statues , 2000, SIGGRAPH.

[37]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[38]  Richard K. Beatson,et al.  Reconstruction and representation of 3D objects with radial basis functions , 2001, SIGGRAPH.