Retrieval of Moho‐reflected shear wave arrivals from ambient seismic noise

Theoretical studies on ambient seismic noise (ASN) predict that complete Green's function between seismic stations can be retrieved from cross correlation. However, only fundamental mode surface waves emerge in most studies involving real data. Here we show that Moho-reflected body wave (SmS) and its multiples can be identified with ASN for station pairs near their critical distances in the short period band (1–5 s). We also show that an uneven distribution of noise sources, such as mining activity and wind–topography interaction, can cause surface wave precursors, which mask weaker body wave phases.

[1]  Roel Snieder,et al.  Required source distribution for interferometry of waves and diffusive fields , 2009 .

[2]  Donald V. Helmberger,et al.  Advancement in source estimation techniques using broadband regional seismograms , 1996, Bulletin of the Seismological Society of America.

[3]  Peter Gerstoft,et al.  Global P, PP, and PKP wave microseisms observed from distant storms , 2008 .

[4]  B. Kennett,et al.  Guided wave propagation in laterally varying media — II. Lg-waves in north-western Europe , 1984 .

[5]  Morgan P. Moschetti,et al.  Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps , 2008 .

[6]  P. Bromirski Earth Vibrations , 2009, Science.

[7]  R. Clowes,et al.  Lithospheric structure in northwestern Canada from Lithoprobe seismic refraction and related studies: a synthesis , 2005 .

[8]  V. Cormier,et al.  Efficiency of Lg Propagation from SmS Dynamic Ray Tracing in Three-dimensionally Varying Crustal Waveguides , 2004 .

[9]  Xiaodong Song,et al.  Surface wave tomography of China from ambient seismic noise correlation , 2008 .

[10]  O. Pizarro,et al.  Vertical propagation of extratropical Rossby waves during the 1997–1998 El Niño off the west coast of South America in a medium‐resolution OGCM simulation , 2008 .

[11]  Yingjie Yang,et al.  Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements , 2007 .

[12]  Kees Wapenaar,et al.  Retrieval of reflections from seismic background‐noise measurements , 2007 .

[13]  M. Bostock Mantle stratigraphy and evolution of the Slave province , 1998 .

[14]  C. Langston,et al.  Modeling P-Rg conversions from isolated topographic features near the NORESS array , 1995, Bulletin of the Seismological Society of America.

[15]  G. Prieto,et al.  Earthquake ground motion prediction using the ambient seismic field , 2008 .

[16]  Michael H. Ritzwoller,et al.  Characteristics of ambient seismic noise as a source for surface wave tomography , 2008 .

[17]  D. James,et al.  Crustal structure of the Kaapvaal craton and its significance for early crustal evolution , 2003 .

[18]  Michel Campillo,et al.  High-Resolution Surface-Wave Tomography from Ambient Seismic Noise , 2005, Science.

[19]  R. Weaver,et al.  Ultrasonics without a source: thermal fluctuation correlations at MHz frequencies. , 2001, Physical review letters.

[20]  B. Kennett Guided wave attenuation in laterally varying media , 1990 .

[21]  D. Helmberger,et al.  Large-amplitude Moho reflections (SmS) from Landers aftershocks, southern California , 1996, Bulletin of The Seismological Society of America (BSSA).

[22]  Anatoli L. Levshin,et al.  Automated Detection, Extraction, and Measurement of Regional Surface Waves , 2001 .

[23]  R. Snieder Extracting the Green's function from the correlation of coda waves: a derivation based on stationary phase. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Keith D. Koper,et al.  Composition and variation of noise recorded at the Yellowknife Seismic Array, 1991–2007 , 2009 .

[25]  R. Clowes,et al.  Lithospheric structure beneath the Archaean Slave Province and Proterozoic Wopmay orogen, northwestern Canada, from a lithoprobe refraction/wide‐angle reflection survey , 2003 .

[26]  K. Wapenaar Retrieving the elastodynamic Green's function of an arbitrary inhomogeneous medium by cross correlation. , 2004, Physical review letters.

[27]  Luis Rivera,et al.  A note on the dynamic and static displacements from a point source in multilayered media , 2002 .

[28]  G. D. Bensen,et al.  Broadband ambient noise surface wave tomography across the United States , 2008 .

[29]  Lapo Boschi,et al.  Tomography of the Alpine region from observations of seismic ambient noise , 2009 .

[30]  Anatoli L. Levshin,et al.  Ambient noise Rayleigh wave tomography across Europe , 2007 .

[31]  Sebastian Rost,et al.  ARRAY SEISMOLOGY: METHODS AND APPLICATIONS , 2002 .

[32]  D. Helmberger,et al.  Numerical-analytical interfacing in two dimensions with applications to modeling NTS seismograms , 1988 .

[33]  Peter Gerstoft,et al.  P‐waves from cross‐correlation of seismic noise , 2005 .

[34]  A. Dziewoński,et al.  A technique for the analysis of transient seismic signals , 1969 .

[35]  Kees Wapenaar,et al.  Reflection images from ambient seismic noise , 2009 .

[36]  B. Kennett Guided wave propagation in laterally varying media — I. Theoretical development , 1984 .

[37]  Gregory C. Beroza,et al.  Testing Community Velocity Models for Southern California Using the Ambient Seismic Field , 2008 .

[38]  J. Revenaugh,et al.  The teleseismic signature of fossil subduction: Northwestern Canada , 2008 .

[39]  P. Shearer,et al.  High‐frequency P‐wave seismic noise driven by ocean winds , 2009 .

[40]  Kees Wapenaar,et al.  Green's function retrieval by cross‐correlation in case of one‐sided illumination , 2006 .

[41]  Michel Campillo,et al.  A study of the seismic noise from its long-range correlation properties , 2006 .

[42]  Maarten V. de Hoop,et al.  Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis: I - Phase velocity maps , 2006 .