Matching markets: design and analysis

A market consists of buyers and sellers of some commodity, say a DVD movie. In this thesis, we assume the role of market operator. Our goal is to ensure that the market has certain desirable properties, including truthfulness, fairness and stability. We explore how to achieve these properties by designing rules for how the participants (buyers and sellers) can interact. We also explore how to efficiently compute the outcome of large numbers of participants interacting at once. The main type of market we study is called a matching market. We study several particular matching markets, including keyword auction, kidney exchange and stable roommate markets. In each of these cases, the aim is to match the participants to each other, somehow taking into account their preferences for one another. Our results focus on properties of the matching process and the design of efficient algorithms for finding various types of matchings. In particular, we present new polynomial time algorithms for finding matchings that have one of the following properties: popularity, rank-maximality and fairness. We also give an efficient algorithm for clearing large swap markets such as kidney exchanges. Finally, we present a new decomposition technique for designing keyword auctions.

[1]  M. Utku Ünver,et al.  Efficient Kidney Exchange: Coincidence of Wants in a Markets with Compatibility-Based Preferences , 2009 .

[2]  Alvin E. Roth,et al.  Pairwise Kidney Exchange , 2004, J. Econ. Theory.

[3]  Dimitrios Michail,et al.  Reducing rank-maximal to maximum weight matching , 2007, Theor. Comput. Sci..

[4]  Robert E. Tarjan,et al.  Faster scaling algorithms for general graph matching problems , 1991, JACM.

[5]  Andrew Postlewaite,et al.  Weak Versus Strong Domination in a Market with Indivisible Goods , 1977 .

[6]  Eiichi Miyagawa,et al.  Random paths to stability in the roommate problem , 2004, Games Econ. Behav..

[7]  Richard Matthew McCutchen The Least-Unpopularity-Factor and Least-Unpopularity-Margin Criteria for Matching Problems with One-Sided Preferences , 2008, LATIN.

[8]  D. Norman,et al.  United network for organ sharing (UNOS) organ allocation policy and kidney utilization. , 2010, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[9]  Kurt Mehlhorn,et al.  Rank-maximal matchings , 2004, TALG.

[10]  Subhash Suri,et al.  Side constraints and non-price attributes in markets , 2006, Games Econ. Behav..

[11]  Gregg O'Malley,et al.  Algorithmic aspects of stable matching problems , 2007 .

[12]  David Manlove,et al.  Popular matchings in the weighted capacitated house allocation problem , 2010, J. Discrete Algorithms.

[13]  Lin Zhou On a conjecture by gale about one-sided matching problems , 1990 .

[14]  David Manlove,et al.  Popular Matchings in the Capacitated House Allocation Problem , 2006, ESA.

[15]  Richard M. Karp,et al.  An optimal algorithm for on-line bipartite matching , 1990, STOC '90.

[16]  Laurent Viennot,et al.  Acyclic Preference Systems in P2P Networks , 2007, Euro-Par.

[17]  P. Hall On Representatives of Subsets , 1935 .

[18]  Jay Sethuraman,et al.  A solution to the random assignment problem on the full preference domain , 2006, J. Econ. Theory.

[19]  D. Segev,et al.  Kidney paired donation and optimizing the use of live donor organs. , 2005, JAMA.

[20]  Tomás Feder,et al.  A New Fixed Point Approach for Stable Networks and Stable Marriages , 1992, J. Comput. Syst. Sci..

[21]  M. F.,et al.  Bibliography , 1985, Experimental Gerontology.

[22]  Rina Dechter,et al.  Generalized best-first search strategies and the optimality of A* , 1985, JACM.

[23]  Telikepalli Kavitha,et al.  Popular mixed matchings , 2009, Theor. Comput. Sci..

[24]  Robert E. Tarjan,et al.  A Fast Parametric Maximum Flow Algorithm and Applications , 1989, SIAM J. Comput..

[25]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[26]  Tuomas Sandholm,et al.  Optimal Winner Determination Algorithms , 2005 .

[27]  Fabien Mathieu,et al.  Stratification in P2P Networks: Application to BitTorrent , 2006, ICDCS.

[28]  Akihisa Tamura,et al.  Transformation from Arbitrary Matchings to Stable Matchings , 1993, J. Comb. Theory, Ser. A.

[29]  Fabien Mathieu Self-Stabilization in Preference-Based Networks , 2007, Seventh IEEE International Conference on Peer-to-Peer Computing (P2P 2007).

[30]  Fabien Mathieu,et al.  Upper Bounds for Stabilization in Acyclic Preference-Based Systems , 2007, SSS.

[31]  Alvin E. Roth,et al.  Two-Sided Matching: A Study in Game-Theoretic Modeling and Analysis , 1990 .

[32]  Vijay Kumar,et al.  Assignment Problems in Rental Markets , 2006, WINE.

[33]  Shimon Even,et al.  An O (N2.5) algorithm for maximum matching in general graphs , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[34]  Robert W. Irving,et al.  The Stable marriage problem - structure and algorithms , 1989, Foundations of computing series.

[35]  Atila Abdulkadiroglu,et al.  RANDOM SERIAL DICTATORSHIP AND THE CORE FROM RANDOM ENDOWMENTS IN HOUSE ALLOCATION PROBLEMS , 1998 .

[36]  Philip Wolfe,et al.  Contributions to the theory of games , 1953 .

[37]  Yufei Yuan,et al.  Residence exchange wanted: A stable residence exchange problem , 1996 .

[38]  Parag A. Pathak,et al.  The Boston Public School Match , 2005 .

[39]  M. Utku Ünver,et al.  Increasing the Opportunity of Live Kidney Donation by Matching for Two- and Three-Way Exchanges , 2006, Transplantation.

[40]  John von Neumann,et al.  1. A Certain Zero-sum Two-person Game Equivalent to the Optimal Assignment Problem , 1953 .

[41]  M. Utku Ünver,et al.  A Kidney Exchange Clearinghouse in New England. , 2005, The American economic review.

[42]  Katarína Cechlárová,et al.  On a generalization of the stable roommates problem , 2005, TALG.

[43]  Telikepalli Kavitha,et al.  Optimal popular matchings , 2009, Discret. Appl. Math..

[44]  Roger B. Myerson,et al.  Optimal Auction Design , 1981, Math. Oper. Res..

[45]  Avrim Blum,et al.  Clearing algorithms for barter exchange markets: enabling nationwide kidney exchanges , 2007, EC '07.

[46]  T. Roughgarden,et al.  Is Efficiency Expensive , 2007 .

[47]  Sang Won Bae,et al.  Geometric stable roommates , 2009, Inf. Process. Lett..

[48]  Kurt Mehlhorn,et al.  Pareto Optimality in House Allocation Problems , 2005, ISAAC.

[49]  Andrew V. Goldberg,et al.  Beyond the flow decomposition barrier , 1998, JACM.

[50]  David Manlove,et al.  The stable marriage problem with master preference lists , 2008, Discret. Appl. Math..

[51]  Telikepalli Kavitha,et al.  Efficient Algorithms for Weighted Rank-Maximal Matchings and Related Problems , 2006, ISAAC.

[52]  M. Padberg,et al.  Solving airline crew scheduling problems by branch-and-cut , 1993 .

[53]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[54]  L. Agodoa,et al.  United States Renal Data System (USRDS). , 2000, Nefrologia : publicacion oficial de la Sociedad Espanola Nefrologia.

[55]  William Vickrey,et al.  Counterspeculation, Auctions, And Competitive Sealed Tenders , 1961 .

[56]  Julián Mestre Weighted Popular Matchings , 2008, Encyclopedia of Algorithms.

[57]  Colin T. S. Sng,et al.  Efficient algorithms for bipartite matching problems with preferences , 2008 .

[58]  N Bilgin,et al.  Living unrelated donor kidney transplantation. , 1992, Transplantation Proceedings.

[59]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[60]  H. Moulin,et al.  Random Matching under Dichotomous Preferences , 2004 .

[61]  Silvio Micali,et al.  An O(v|v| c |E|) algoithm for finding maximum matching in general graphs , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[62]  Sandy Scott,et al.  A Study Of Stable Marriage Problems With Ties , 2005 .

[63]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[64]  S. Muthukrishnan,et al.  General auction mechanism for search advertising , 2008, WWW '09.

[65]  Robert A Montgomery,et al.  A Comparison of Populations Served by Kidney Paired Donation and List Paired Donation , 2005, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[66]  Jimmy J. M. Tan A Necessary and Sufficient Condition for the Existence of a Complete Stable Matching , 1991, J. Algorithms.

[67]  David Manlove,et al.  Hard variants of stable marriage , 2002, Theor. Comput. Sci..

[68]  Kurt Mehlhorn,et al.  Network Problems with Non-Polynomial Weights And Applications , 2005 .

[69]  Mohammad Mahdian,et al.  Random popular matchings , 2006, EC '06.

[70]  Michael A. Trick,et al.  Stable matching with preferences derived from a psychological model , 1986 .

[71]  Ashish Goel,et al.  Truthful auctions for pricing search keywords , 2006, EC '06.

[72]  R. Zeckhauser,et al.  The Efficient Allocation of Individuals to Positions , 1979, Journal of Political Economy.

[73]  F. Delmonico,et al.  Exchanging kidneys--advances in living-donor transplantation. , 2004, The New England journal of medicine.

[74]  P. Gärdenfors Match making: Assignments based on bilateral preferences , 1975 .

[75]  Kim-Sau Chung,et al.  On the Existence of Stable Roommate Matchings , 2000, Games Econ. Behav..

[76]  Eytan Ronn,et al.  NP-Complete Stable Matching Problems , 1990, J. Algorithms.

[77]  Telikepalli Kavitha,et al.  Dynamic Matching Markets and Voting Paths , 2006, SWAT.

[78]  Laurent Viennot,et al.  On Using Matching Theory to Understand P2P Network Design , 2006, ArXiv.

[79]  David Manlove,et al.  The Stable Roommates Problem with Ties , 2002, J. Algorithms.

[80]  David Manlove,et al.  The Stable Roommates Problem with Globally Ranked Pairs , 2007, WINE.

[81]  E. H. Clarke Multipart pricing of public goods , 1971 .

[82]  Theodore Groves,et al.  Incentives in Teams , 1973 .

[83]  Martin W. P. Savelsbergh,et al.  Branch-and-Price: Column Generation for Solving Huge Integer Programs , 1998, Oper. Res..

[84]  Tim Roughgarden,et al.  Algorithmic Game Theory , 2007 .

[85]  Claire Mathieu,et al.  On-line bipartite matching made simple , 2008, SIGA.

[86]  Vahab S. Mirrokni,et al.  Uncoordinated two-sided matching markets , 2009, SECO.

[87]  Robert W. Irving An Efficient Algorithm for the "Stable Roommates" Problem , 1985, J. Algorithms.

[88]  Eric McDermid,et al.  Popular matchings: structure and algorithms , 2011, J. Comb. Optim..

[89]  Donald E. Knuth,et al.  Stable Marriage and Its Relation to Other Combinatorial Problems: An Introduction to the Mathematical Analysis of Algorithms , 1996 .