The inherited basis of diabetes mellitus: implications for the genetic analysis of complex traits.

Diabetes encompasses a heterogeneous group of diseases, each with a substantial genetic component. We review the division of diabetes into different subtypes based on clinical phenotype, the fruitful pursuit of genes underlying monogenic forms of the disease, the successes and drawbacks of whole-genome linkage scans in type 1 and type 2 diabetes, and the recent identification of several diabetes genes by large association studies. We use the lessons learned from this extensive body of evidence to illustrate general implications for the genetic analysis of complex traits.

[1]  David Altshuler,et al.  Once and again-issues surrounding replication in genetic association studies. , 2002, The Journal of clinical endocrinology and metabolism.

[2]  L. Schöls,et al.  Heterozygous expansion of the GAA tract of the X25/frataxin gene is associated with insulin resistance in humans. , 2000, Diabetes.

[3]  R. S. Spielman,et al.  A genome–wide search for human non–insulin–dependent (type 2) diabetes genes reveals a major susceptibility locus on chromosome 2 , 1996, Nature Genetics.

[4]  Johan Auwerx,et al.  A Pro12Ala substitution in PPARγ2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity , 1998, Nature Genetics.

[5]  J. Papp,et al.  Identification of the gene altered in Berardinelli–Seip congenital lipodystrophy on chromosome 11q13 , 2001, Nature Genetics.

[6]  D. Moczulski,et al.  Homozygous combination of calpain 10 gene haplotypes is associated with type 2 diabetes mellitus in a Polish population. , 2002, European journal of endocrinology.

[7]  Kaisa Silander,et al.  Variation in three single nucleotide polymorphisms in the calpain-10 gene not associated with type 2 diabetes in a large Finnish cohort. , 2002, Diabetes.

[8]  M. Permutt,et al.  Missense mutations in the pancreatic islet beta cell inwardly rectifying K+ channel gene (KIR6.2/BIR ): a meta-analysis suggests a role in the polygenic basis of Type II diabetes mellitus in Caucasians , 1998, Diabetologia.

[9]  M. Spence,et al.  CLOSE GENETIC LINKAGE BETWEEN DIABETES MELLITUS AND KIDD BLOOD GROUP , 1981, The Lancet.

[10]  J. Stengård,et al.  Glucokinase Gene Polymorphisms: a Genetic Marker for Glucose Intolerance in a Cohort of Elderly Finnish Men , 1994, Diabetic medicine : a journal of the British Diabetic Association.

[11]  T. Saruta,et al.  CTLA4 gene polymorphism confers susceptibility to Graves' disease in Japanese. , 1997, Thyroid : official journal of the American Thyroid Association.

[12]  D. Robbins,et al.  A human proinsulin variant at arginine 65 , 1981, Nature.

[13]  J. Todd,et al.  Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus , 1997, Nature Genetics.

[14]  Q. Ren,et al.  Effect of the peroxisome proliferator-activated receptor-gamma 2 pro(12)ala variant on obesity, glucose homeostasis, and blood pressure in members of familial type 2 diabetic kindreds. , 2001, The Journal of clinical endocrinology and metabolism.

[15]  Guillaume Adelmant,et al.  Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1 , 2001, Nature.

[16]  M. Permutt,et al.  Sequence Variants in the Pancreatic Islet β-Cell Inwardly Rectifying K+ Channel Kir6.2 (Bir) Gene: Identification and Lack of Role in Caucasian Patients with NIDDM , 1997, Diabetes.

[17]  P. de Knijff,et al.  Variants in the sulphonylurea receptor gene: association of the exon 16–3t variant with Type II diabetes mellitus in Dutch Caucasians , 1999, Diabetologia.

[18]  C. Hanis,et al.  Role of calpain-10 gene variants in familial type 2 diabetes in Caucasians. , 2002, The Journal of clinical endocrinology and metabolism.

[19]  J. R. Rowe,et al.  A diabetes-susceptible HLA haplotype is best defined by a combination of HLA-DR and -DQ alleles. , 1989, The Journal of clinical investigation.

[20]  M. Leppert,et al.  A genome-wide search for type 2 diabetes susceptibility genes in Utah Caucasians. , 1999, Diabetes.

[21]  L. Chuang,et al.  Peroxisome proliferator-activated receptor gamma 2 Pro12Ala gene variant is strongly associated with larger body mass in the Taiwanese. , 2000, Metabolism: clinical and experimental.

[22]  K. Clément,et al.  The Pro115Gln and Pro12Ala PPAR gamma gene mutations in obesity and type 2 diabetes , 2000, International Journal of Obesity.

[23]  S. Rich,et al.  Evidence of a novel type 2 diabetes locus 50 cM centromeric to NIDDM2 on chromosome 12q. , 1999, Diabetes.

[24]  Eric S. Lander,et al.  The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes , 2000, Nature Genetics.

[25]  J. Todd,et al.  Identification of susceptibility loci for insulin-dependent diabetes mellitus by trans-racial gene mapping , 1989, Nature.

[26]  C. Dina,et al.  Genome-wide search for type 2 diabetes in Japanese affected sib-pairs confirms susceptibility genes on 3q, 15q, and 20q and identifies two new candidate Loci on 7p and 11p. , 2002, Diabetes.

[27]  D. Moczulski,et al.  Role of hemochromatosis C282Y and H63D mutations in HFE gene in development of type 2 diabetes and diabetic nephropathy. , 2001, Diabetes care.

[28]  S. Cereghini Liver‐enriched transcription factors and hepatocyte differentiation , 1996, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[29]  M. Daly,et al.  PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes , 2003, Nature Genetics.

[30]  Nancy J. Cox,et al.  Loci on chromosomes 2 (NIDDM1) and 15 interact to increase susceptibility to diabetes in Mexican Americans , 1999, Nature Genetics.

[31]  C. Bogardus,et al.  A calpain-10 gene polymorphism is associated with reduced muscle mRNA levels and insulin resistance. , 2000, The Journal of clinical investigation.

[32]  A. Kosaki,et al.  Insulin-resistant diabetes due to a point mutation that prevents insulin proreceptor processing. , 1988, Science.

[33]  T. Kadowaki,et al.  The Pro12Ala Polymorphism in PPAR γ2 May Confer Resistance to Type 2 Diabetes , 2000 .

[34]  W. Rutter,et al.  The highly polymorphic region near the human insulin gene is composed of simple tandemly repeating sequences , 1982, Nature.

[35]  C. Polychronakos,et al.  Class III alleles of the variable number of tandem repeat insulin polymorphism associated with silencing of thymic insulin predispose to type 1 diabetes. , 2001, The Journal of clinical endocrinology and metabolism.

[36]  J. Todd,et al.  A genome-wide search for human type 1 diabetes susceptibility genes , 1994, Nature.

[37]  M. Permutt,et al.  Identification and functional analysis of sulfonylurea receptor 1 variants in Japanese patients with NIDDM. , 1998, Diabetes.

[38]  D. Bowden,et al.  Identification of Genetic Markers Flanking the Locus for Maturity-Onset Diabetes of the Young on Human Chromosome 20 , 1992, Diabetes.

[39]  J. Rotter,et al.  Confirmation of three susceptibility genes to insulin-dependent diabetes mellitus: IDDM4, IDDM5 and IDDM8. , 1996, Human molecular genetics.

[40]  Diabetes in identical twins , 1981, Diabetologia.

[41]  N J Cox,et al.  Seven regions of the genome show evidence of linkage to type 1 diabetes in a consensus analysis of 767 multiplex families. , 2001, American journal of human genetics.

[42]  A. Matsutani,et al.  HepG2/erythrocyte glucose transporter (GLUT1) gene in NIDDM: a population association study and molecular scanning in Japanese subjects , 1995, Diabetologia.

[43]  Tom H. Lindner,et al.  Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus , 2000, Nature Genetics.

[44]  T. Hansen,et al.  Mutation analysis of peroxisome proliferator-activated receptor-γ coactivator-1 (PGC-1) and relationships of identified amino acid polymorphisms to Type II diabetes mellitus , 2001, Diabetologia.

[45]  David L Duffy,et al.  A genomewide search for type 2 diabetes-susceptibility genes in indigenous Australians. , 2002, American journal of human genetics.

[46]  J. Beckmann,et al.  Close linkage of glucokinase locus on chromosome 7p to early-onset non-insulin-dependent diabetes mellitus , 1992, Nature.

[47]  D. Duffy,et al.  Novel susceptibility gene for late-onset NIDDM is localized to human chromosome 12q. , 1998, Diabetes.

[48]  J. Nerup,et al.  HL-A antigens and diabetes mellitus. , 1974, Lancet.

[49]  A. Ullrich,et al.  Genetic variation in the human insulin gene. , 1980, Science.

[50]  H. Erlich,et al.  Evidence for oligogenic inheritance of type 1 diabetes in a large Bedouin Arab family. , 1998, The Journal of clinical investigation.

[51]  John A. Todd,et al.  Parameters for reliable results in genetic association studies in common disease , 2002, Nature Genetics.

[52]  J. Beckmann,et al.  A gene for maturity onset diabetes of the young (MODY) maps to chromosome 12q , 1995, Nature Genetics.

[53]  J. Todd,et al.  The CTLA-4 gene region of chromosome 2q33 is linked to, and associated with, type 1 diabetes. Belgian Diabetes Registry. , 1996, Human molecular genetics.

[54]  K. Clément,et al.  Genetic Studies of the Sulfonylurea Receptor Gene Locus in NIDDM and in Morbid Obesity Among French Caucasians , 1997, Diabetes.

[55]  F. Pociot,et al.  Linkage of type I diabetes to 15q26 (IDDM3) in the Danish population , 1996, Human Genetics.

[56]  H. Ochs,et al.  The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3 , 2001, Nature Genetics.

[57]  J. Maassen,et al.  Mutation in mitochondrial tRNALeu(UUR) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness , 1992, Nature Genetics.

[58]  M. Luo,et al.  A genome-wide search for Type II diabetes susceptibility genes in Chinese Hans , 2001, Diabetologia.

[59]  S. Gabriel,et al.  The Structure of Haplotype Blocks in the Human Genome , 2002, Science.

[60]  M. Kasuga,et al.  The Pro12 -->Ala substitution in PPAR-gamma is associated with resistance to development of diabetes in the general population: possible involvement in impairment of insulin secretion in individuals with type 2 diabetes. , 2001, Diabetes.

[61]  R. Hanson,et al.  Sib-pair linkage analysis for susceptibility genes for microvascular complications among Pima Indians with type 2 diabetes. Pima Diabetes Genes Group. , 1998, Diabetes.

[62]  J. Todd,et al.  Suggestive evidence for association of human chromosome 18q12-q21 and its orthologue on rat and mouse chromosome 18 with several autoimmune diseases. , 2001, Diabetes.

[63]  A. M. Møller,et al.  Decreased tolbutamide-stimulated insulin secretion in healthy subjects with sequence variants in the high-affinity sulfonylurea receptor gene. , 1998, Diabetes.

[64]  A. Cudworth,et al.  Letter: HL-A antigens and diabetes mellitus. , 1974, Lancet.

[65]  K. Petersen,et al.  Pathogenesis of skeletal muscle insulin resistance in type 2 diabetes mellitus. , 2002, The American journal of cardiology.

[66]  S. Wiltshire,et al.  Association studies of variants in promoter and coding regions of beta‐cell ATP‐sensitive K‐channel genes SUR1 and Kir6.2 with Type 2 diabetes mellitus (UKPDS 53) , 2001, Diabetic medicine : a journal of the British Diabetic Association.

[67]  Mark S. Anderson,et al.  Projection of an Immunological Self Shadow Within the Thymus by the Aire Protein , 2002, Science.

[68]  M. McCarthy,et al.  Genomewide search for type 2 diabetes mellitus susceptibility loci in Finnish families: the Botnia study. , 2002, American journal of human genetics.

[69]  G I Bell,et al.  Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. , 2001, The New England journal of medicine.

[70]  J. Todd,et al.  HLA-DQβ gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus , 1987, Nature.

[71]  Akinori Nakamura,et al.  A mutation in the ceruloplasmin gene is associated with systemic hemosiderosis in humans , 1995, Nature Genetics.

[72]  K. Usadel,et al.  CTLA4 alanine-17 confers genetic susceptibility to Graves' disease and to type 1 diabetes mellitus. , 1997, The Journal of clinical endocrinology and metabolism.

[73]  J. Todd,et al.  Evidence for a type 1 diabetes susceptibility locus (IDDM10) on human chromosome 10p11-q11. , 1997, Human molecular genetics.

[74]  K. Lunetta,et al.  Testing for population subdivision and association in four case-control studies. , 2002, American journal of human genetics.

[75]  C. Dina,et al.  Genomewide search for type 2 diabetes-susceptibility genes in French whites: evidence for a novel susceptibility locus for early-onset diabetes on chromosome 3q27-qter and independent replication of a type 2-diabetes locus on chromosome 1q21-q24. , 2000, American journal of human genetics.

[76]  B. Spiegelman PPAR-gamma: adipogenic regulator and thiazolidinedione receptor. , 1998, Diabetes.

[77]  Nathaniel Rothman,et al.  Counterpoint: bias from population stratification is not a major threat to the validity of conclusions from epidemiological studies of common polymorphisms and cancer. , 2002, Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology.

[78]  P. Patel,et al.  Friedreich's Ataxia: Autosomal Recessive Disease Caused by an Intronic GAA Triplet Repeat Expansion , 1996, Science.

[79]  H. Edlund,et al.  Insulin-promoter-factor 1 is required for pancreas development in mice , 1994, Nature.

[80]  B. Zinman,et al.  Peroxisome Proliferator-Activated Receptor-γ2 P12A and Type 2 Diabetes in Canadian Oji-Cree , 2000 .

[81]  T. Ogihara,et al.  Early-onset type 2 (non-insulin-dependent) diabetes mellitus is associated with glucokinase locus, but not with adenosine deaminase locus, in the Japanese population. , 1994, Diabetes research and clinical practice.

[82]  M. King,et al.  Concordance for Type 2 (non-insulin-dependent) diabetes mellitus in male twins , 1987, Diabetologia.

[83]  S. Rich,et al.  New Susceptibility Locus for NIDDM Is Localized to Human Chromosome 20q , 1997, Diabetes.

[84]  Camillo Ricordi,et al.  The insulin gene is transcribed in the human thymus and transcription levels correlate with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type 1 diabetes , 1997, Nature Genetics.

[85]  W. Ewens,et al.  Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). , 1993, American journal of human genetics.

[86]  Joseph B. Rayman,et al.  The Finland-United States investigation of non-insulin-dependent diabetes mellitus genetics (FUSION) study. I. An autosomal genome scan for genes that predispose to type 2 diabetes. , 2000, American journal of human genetics.

[87]  R. Myers,et al.  Candidate-gene approaches for studying complex genetic traits: practical considerations , 2002, Nature Reviews Genetics.

[88]  F. Collins,et al.  Type 2 diabetes: evidence for linkage on chromosome 20 in 716 Finnish affected sib pairs. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[89]  M. McCarthy,et al.  Mapping of a gene for type 2 diabetes associated with an insulin secretion defect by a genome scan in Finnish families , 1996, Nature Genetics.

[90]  J. Flier,et al.  Detection of an alteration in the insulin-receptor gene in a patient with insulin resistance, acanthosis nigricans, and the polycystic ovary syndrome (type A insulin resistance). , 1988, The New England journal of medicine.

[91]  E. Lander,et al.  Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease , 2003, Nature Genetics.

[92]  Marc Montminy,et al.  Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus , 1999, Nature Genetics.

[93]  M. Blajchman,et al.  Histocompatibility (HL-A) Antigens, Lymphocytotoxic Antibodies and Tissue Antibodies in Patients with Diabetes Mellitus , 1973, Diabetes.

[94]  J. Beckmann,et al.  A susceptibility locus for early-onset non-insulin dependent (type 2) diabetes mellitus maps to chromosome 20q, proximal to the phosphoenolpyruvate carboxykinase gene. , 1997, Human molecular genetics.

[95]  G. Velho,et al.  A missense mutation in the glucagon receptor gene is associated with non–insulin–dependent diabetes mellitus , 1995, Nature Genetics.

[96]  Hiroyuki Kuroki,et al.  Mutation in hepatocyte nuclear factor–1β gene (TCF2) associated with MODY , 1997, Nature Genetics.

[97]  D. Galton,et al.  ASSOCIATION OF GENETIC VARIANT OF THE GLUCOSE TRANSPORTER WITH NON-INSULIN-DEPENDENT DIABETES MELLITUS , 1988, The Lancet.

[98]  L. Peltonen,et al.  An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains , 1997, Nature Genetics.

[99]  A. Chakravarti,et al.  A genome-wide scan for obesity in African-Americans. , 2002, Diabetes.

[100]  Simeon I. Taylor,et al.  Two mutant alleles of the insulin receptor gene in a patient with extreme insulin resistance. , 1988, Science.

[101]  A. Green,et al.  Concordance rates of insulin dependent diabetes mellitus: a population based study of young Danish twins , 1995, BMJ.

[102]  T. Hansen,et al.  Variants within the calpain-10 gene on chromosome 2q37 (NIDDM1) and relationships to type 2 diabetes, insulin resistance, and impaired acute insulin secretion among Scandinavian Caucasians. , 2002, Diabetes.

[103]  Howard M. Goodman,et al.  Sequence of the human insulin gene , 1980, Nature.

[104]  T. Hansen,et al.  The E23K variant of Kir6.2 associates with impaired post-OGTT serum insulin response and increased risk of type 2 diabetes. , 2003, Diabetes.

[105]  R. Spielman,et al.  Gene dosage and susceptibility to insulin‐dependent diabetes , 1980, Annals of human genetics.

[106]  G. Morahan,et al.  Linkage disequilibrium of a type 1 diabetes susceptibility locus with a regulatory IL12B allele , 2001, Nature Genetics.

[107]  M. Permutt,et al.  Sequence Variants in the Sulfonylurea Receptor (SUR) Gene Are Associated With NIDDM in Caucasians , 1996, Diabetes.

[108]  M. Ehm,et al.  An autosomal genomic scan for loci linked to type II diabetes mellitus and body-mass index in Pima Indians. , 1998, American journal of human genetics.

[109]  M. Permutt,et al.  Linkage Analysis of GLUT1 (HepG2) and GLUT2 (Liver/Islet) Genes in Familial NIDDM , 1992, Diabetes.

[110]  J. Weber,et al.  Quantitative trait loci on chromosomes 3 and 17 influence phenotypes of the metabolic syndrome. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[111]  V. Colantuoni,et al.  Pro12Ala substitution in the peroxisome proliferator-activated receptor-gamma2 is not associated with type 2 diabetes. , 1999, Diabetes.

[112]  W. Ricart,et al.  C282Y and H63D mutations of the hemochromatosis candidate gene in type 2 diabetes. , 1999, Diabetes care.

[113]  Y. Min,et al.  Significance of Pro12Ala mutation in peroxisome proliferator-activated receptor-gamma2 in Korean diabetic and obese subjects. , 2000, The Journal of clinical endocrinology and metabolism.

[114]  Frank Dudbridge,et al.  Haplotype tagging for the identification of common disease genes , 2001, Nature Genetics.

[115]  N. Maclaren,et al.  Maturity-onset diabetes of youth in black Americans. , 1987, The New England journal of medicine.

[116]  L. Cardon,et al.  Association study designs for complex diseases , 2001, Nature Reviews Genetics.

[117]  T. Hansen,et al.  Amino Acid Polymorphisms in the ATP-Regulatable Inward Rectifier Kir6.2 and Their Relationships to Glucose- and Tolbutamide-Induced Insulin Secretion, the Insulin Sensitivity Index, and NIDDM , 1997, Diabetes.

[118]  E. Lander,et al.  Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results , 1995, Nature Genetics.

[119]  M. C. Ellis,et al.  A novel MHC class I–like gene is mutated in patients with hereditary haemochromatosis , 1996, Nature Genetics.

[120]  J. Beckmann,et al.  Familial hyperglycemia due to mutations in glucokinase. Definition of a subtype of diabetes mellitus. , 1993, The New England journal of medicine.

[121]  J. Karam,et al.  A Polymorphic Locus Near the Human Insulin Gene Is Associated with Insulin-dependent Diabetes Melliitus , 1984, Diabetes.

[122]  C. Lindgren,et al.  A gene conferring susceptibility to type 2 diabetes in conjunction with obesity is located on chromosome 18p11. , 2001, Diabetes.

[123]  K. Flegal,et al.  Prevalence of Diabetes, Impaired Fasting Glucose, and Impaired Glucose Tolerance in U.S. Adults: The Third National Health and Nutrition Examination Survey, 1988–1994 , 1998, Diabetes Care.

[124]  Alan E. Jackson,et al.  Haplotype combinations of calpain 10 gene polymorphisms associate with increased risk of impaired glucose tolerance and type 2 diabetes in South Indians. , 2002, Diabetes.

[125]  L Kruglyak,et al.  Lower-than-expected linkage disequilibrium between tightly linked markers in humans suggests a role for gene conversion. , 2001, American journal of human genetics.

[126]  J. Todd,et al.  Fine mapping of the diabetes-susceptibility locus, IDDM4, on chromosome 11q13. , 1998, American journal of human genetics.

[127]  R Foxon,et al.  A genomewide scan for loci predisposing to type 2 diabetes in a U.K. population (the Diabetes UK Warren 2 Repository): analysis of 573 pedigrees provides independent replication of a susceptibility locus on chromosome 1q. , 2001, American journal of human genetics.

[128]  J. Hirschhorn,et al.  A comprehensive review of genetic association studies , 2002, Genetics in Medicine.

[129]  S. Gregory,et al.  LMNA, encoding lamin A/C, is mutated in partial lipodystrophy , 2000, Nature Genetics.

[130]  K. Kidd,et al.  Geographic and haplotype structure of candidate type 2 diabetes susceptibility variants at the calpain-10 locus. , 2002, American journal of human genetics.

[131]  S. Plon,et al.  Susceptibility to insulin-dependent diabetes mellitus maps to a locus (IDDM11) on human chromosome 14q24.3-q31. , 1996, Genomics.

[132]  S. Fajans,et al.  Tolbutamide-induced Improvement in Carbohydrate Tolerance of Young People with Mild Diabetes Mellitus , 1960, Diabetes.

[133]  F. Gonzalez,et al.  The Coactivator PGC-1 Is Involved in the Regulation of the Liver Carnitine Palmitoyltransferase I Gene Expression by cAMP in Combination with HNF4α and cAMP-response Element-binding Protein (CREB)* , 2002, The Journal of Biological Chemistry.

[134]  J. Nerup,et al.  HLA-D and -DR antigens in genetic analysis of insulin dependent diabetes mellitus , 1981, Diabetologia.

[135]  J. Salonen,et al.  Role of C282Y mutation in haemochromatosis gene in development of type 2 diabetes in healthy men: prospective cohort study , 2000, BMJ : British Medical Journal.

[136]  T. Frayling,et al.  Variation in the calpain-10 gene affects blood glucose levels in the British population. , 2002, Diabetes.

[137]  J. Todd,et al.  Human type 1 diabetes and the insulin gene: principles of mapping polygenes. , 1996, Annual review of genetics.

[138]  S. Rich,et al.  Linkage of Genetic Markers on Human Chromosomes 20 and 12 to NIDDM in Caucasian Sib Pairs With a History of Diabetic Nephropathy , 1997, Diabetes.

[139]  J. Ilonen,et al.  The immunoglobulin heavy-chain variable region in insulin-dependent diabetes mellitus: affected-sib-pair analysis and association studies. , 1996, American journal of human genetics.

[140]  J. Rotter,et al.  Genetic and physical mapping of a type 1 diabetes susceptibility gene (IDDM12) to a 100-kb phagemid artificial chromosome clone containing D2S72-CTLA4-D2S105 on chromosome 2q33. , 2000, Diabetes.

[141]  P. Poulsen,et al.  Heritability of Type II (non-insulin-dependent) diabetes mellitus and abnormal glucose tolerance – a population-based twin study , 1999, Diabetologia.

[142]  M. McCarthy,et al.  Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. , 2003, Diabetes.

[143]  M. Permutt,et al.  A genetic marker at the glucokinase gene locus for Type 2 (non-insulin-dependent) diabetes mellitus in Mauritian Creoles , 1992, Diabetologia.

[144]  A. Cudworth,et al.  HL-A ANTIGENS AND DIABETES MELLITUS , 1974 .

[145]  N. Risch,et al.  A second-generation screen of the human genome for susceptibility to insulin-dependent diabetes mellitus , 1998, Nature Genetics.

[146]  M. Schwanstecher,et al.  KIR6.2 Polymorphism Predisposes to Type 2 Diabetes by Inducing Overactivity of Pancreatic β-Cell ATP-Sensitive K+ Channels , 2002 .

[147]  R. Hegele,et al.  Nuclear lamin A/C R482Q mutation in canadian kindreds with Dunnigan-type familial partial lipodystrophy. , 2000, Human molecular genetics.

[148]  F. Collins,et al.  The peroxisome proliferator-activated receptor-gamma2 Pro12A1a variant: association with type 2 diabetes and trait differences. , 2001, Diabetes.

[149]  H. Tsai,et al.  Type 2 diabetes and three calpain-10 gene polymorphisms in Samoans: no evidence of association. , 2001, American journal of human genetics.

[150]  Amanda J. Wilson,et al.  A search for type 1 diabetes susceptibility genes in families from the United Kingdom , 1998, Nature Genetics.

[151]  M. James,et al.  Genetic mapping of a susceptibility locus for insulin-dependent diabetes mellitus on chromosome llq , 1994, Nature.

[152]  William L. Clarke,et al.  Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence , 1997, Nature Genetics.

[153]  B. Zinman,et al.  Absence of association of type 2 diabetes with CAPN10 and PC-1 polymorphisms in Oji-Cree. , 2001, Diabetes care.

[154]  S. Eckenrode,et al.  Fine-mapping of the type 1 diabetes locus (IDDM4) on chromosome 11q and evaluation of two candidate genes (FADD and GALN) by affected sibpair and linkage-disequilibrium analyses , 1999, Human Genetics.

[155]  M. Igarashi,et al.  Calpain 10 gene polymorphisms are related, not to type 2 diabetes, but to increased serum cholesterol in Japanese. , 2002, Diabetes research and clinical practice.

[156]  W. Clarke,et al.  Early-onset type-ll diabetes mellitus (MODY4) linked to IPF1 , 1997, Nature Genetics.

[157]  J. Weber,et al.  Genomewide search for type 2 diabetes susceptibility genes in four American populations. , 2000, American journal of human genetics.

[158]  D. Steiner,et al.  Studies on mutant human insulin genes: identification and sequence analysis of a gene encoding [SerB24]insulin. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[159]  D. Arveiler,et al.  Impact of sulfonylurea receptor 1 genetic variability on non-insulin-dependent diabetes mellitus prevalence and treatment: a population study. , 2001, American journal of medical genetics.

[160]  M. McCarthy,et al.  Studies of association between the gene for calpain-10 and type 2 diabetes mellitus in the United Kingdom. , 2001, American journal of human genetics.

[161]  P. Behn,et al.  A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome) , 1998, Nature Genetics.

[162]  Luc J. Smink,et al.  Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease , 2003, Nature.

[163]  M. Kunesova,et al.  Is a Pro12Ala Polymorphism of the PPARγ2 Gene Related to Obesity and Type 2 Diabetes Mellitus in the Czech Population? , 2002, Annals of the New York Academy of Sciences.

[164]  J. Auwerx,et al.  Impact of the Peroxisome Proliferator Activated Receptor γ2 Pro12Ala polymorphism on adiposity, lipids and non-insulin-dependent diabetes mellitus , 2000, International Journal of Obesity.

[165]  Q. Ren,et al.  Liver pyruvate kinase polymorphisms are associated with type 2 diabetes in northern European Caucasians. , 2002, Diabetes.

[166]  E. Génin,et al.  Genetic studies of polymorphisms in ten non-insulin-dependent diabetes mellitus candidate genes in Tamil Indians from Pondichery. , 1998, Diabetes & metabolism.

[167]  J. Weissenbach,et al.  Evidence of a non-MHC susceptibility locus in type I diabetes linked to HLA on chromosome 6. , 1997, American journal of human genetics.

[168]  J. Casanova,et al.  X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy , 2001, Nature Genetics.

[169]  P. O'Connell,et al.  Linkage of type 2 diabetes mellitus and of age at onset to a genetic location on chromosome 10q in Mexican Americans. , 1999, American journal of human genetics.

[170]  T. Barrett,et al.  Neurodegeneration and diabetes: UK nationwide study of Wolfram (DIDMOAD) syndrome , 1995, The Lancet.

[171]  V. Mootha,et al.  Mechanisms Controlling Mitochondrial Biogenesis and Respiration through the Thermogenic Coactivator PGC-1 , 1999, Cell.

[172]  S. Engeli,et al.  Pro12Ala missense mutation of the peroxisome proliferator activated receptor gamma and diabetes mellitus. , 1999, Biochemical and biophysical research communications.

[173]  J. Hirschhorn Genetic epidemiology of type 1 diabetes , 2003, Pediatric diabetes.

[174]  S. Gough,et al.  Mutation of the glucagon receptor gene and diabetes mellitus in the UK: association or founder effect? , 1995, Human molecular genetics.

[175]  N Risch,et al.  The Future of Genetic Studies of Complex Human Diseases , 1996, Science.

[176]  L. Field Genetic linkage and association studies of Type I diabetes: challenges and rewards , 2002, Diabetologia.

[177]  P. Puigserver,et al.  A Cold-Inducible Coactivator of Nuclear Receptors Linked to Adaptive Thermogenesis , 1998, Cell.

[178]  J. Bryan,et al.  Mutations in the sulfonylurea receptor gene in familial persistent hyperinsulinemic hypoglycemia of infancy. , 1995, Science.

[179]  J. Rotter,et al.  Insulin-dependent diabetes mellitus (IDDM) is associated with CTLA4 polymorphisms in multiple ethnic groups. , 1997, Human molecular genetics.

[180]  L. Field,et al.  A locus on chromosome 15q26 (IDDM3) produces susceptibility to insulin-dependent diabetes mellitus , 1994, Nature Genetics.

[181]  M. Daly,et al.  Guilt by association , 2000, Nature Genetics.

[182]  J. Todd,et al.  Linkage disequilibrium mapping of a type 1 diabetes susceptibility gene (IDDM7) to chromosome 2q31–q33 , 1995, Nature Genetics.

[183]  N J Cox,et al.  Gene for non-insulin-dependent diabetes mellitus (maturity-onset diabetes of the young subtype) is linked to DNA polymorphism on human chromosome 20q. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[184]  Shinsei Minoshima,et al.  Positional cloning of the APECED gene , 1997, Nature Genetics.

[185]  L. Niskanen,et al.  Sulfonylurea receptor 1 gene variants are associated with gestational diabetes and type 2 diabetes but not with altered secretion of insulin. , 2000, Diabetes care.

[186]  S. Lewitzky,et al.  A genome scan for type 2 diabetes susceptibility loci in a genetically isolated population. , 2001, Diabetes.

[187]  V. Mohan,et al.  Genetic contribution of polymorphism of the GLUT1 and GLUT4 genes to the susceptibility to type 2 (non-insulin-dependent) diabetes mellitus in different populations , 1996, Acta Diabetologica.

[188]  S. O’Rahilly,et al.  Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene , 1997, Nature Genetics.

[189]  T. Hansen,et al.  Mutations in the hepatocyte nuclear factor-1α gene in maturity-onset diabetes of the young (MODY3) , 1996, Nature.

[190]  A. Bowcock,et al.  AGPAT2 is mutated in congenital generalized lipodystrophy linked to chromosome 9q34 , 2002, Nature Genetics.

[191]  J. Rotter,et al.  HLA Genotypic Study of Insulin-dependent Diabetes: The Excess of DR3/DR4 Heterozygotes Allows Rejection of the Recessive Hypothesis , 1983, Diabetes.

[192]  M. Redondo,et al.  Genetics of type 1A diabetes. , 2001, Recent progress in hormone research.

[193]  G. Hitman,et al.  Type 1 (insulin-dependent) diabetes and a highly variable locus close to the insulin gene on chromosome 11 , 1985, Diabetologia.