Improved Off-State Reliability of Nonvolatile Resistive Switch With Low Programming Voltage

A complementary atom switch (CAS) is proposed to realize low programming voltage and high off-state reliability for crossbar switch application. Two atom switches with bipolar operation are connected in series with opposite direction, in which the two atom switches work as a single element. The two off-state atom switches in the CAS complementarily divide voltage stress, greatly enlarging the off-state lifetime. The CAS is embedded in Cu BEOL on a 65-nm-node CMOS platform without degrading the CMOS and interconnect performances. The CAS using two atom switches is one of the candidates for realizing energy-efficient nonvolatile programmable switches.

[1]  Rainer Waser,et al.  Complementary resistive switches for passive nanocrossbar memories. , 2010, Nature materials.

[2]  M. Kozicki,et al.  Bipolar and Unipolar Resistive Switching in Cu-Doped $ \hbox{SiO}_{2}$ , 2007, IEEE Transactions on Electron Devices.

[3]  T. Sakamoto,et al.  Polymer Solid-Electrolyte Switch Embedded on CMOS for Nonvolatile Crossbar Switch , 2011, IEEE Transactions on Electron Devices.

[4]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[5]  K. Terabe,et al.  Diffusivity of Cu Ions in Solid Electrolyte and Its Effect on the Performance of Nanometer-Scale Switch , 2008, IEEE Transactions on Electron Devices.

[6]  Shimeng Yu,et al.  Read/write schemes analysis for novel complementary resistive switches in passive crossbar memory arrays. , 2010, Nanotechnology.

[7]  Masakazu Aono,et al.  Formation and disappearance of a nanoscale silver cluster realized by solid electrochemical reaction , 2002 .

[8]  J. Lloyd,et al.  Simple model for time-dependent dielectric breakdown in inter- and intralevel low-k dielectrics , 2005 .

[9]  N. Kasai,et al.  Highly scalable nonvolatile TiOx/TaSiOy solid-electrolyte crossbar switch integrated in local interconnect for low power reconfigurable logic , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[10]  H. Hada,et al.  Nonvolatile Crossbar Switch Using $\hbox{TiO}_{x}/ \hbox{TaSiO}_{y}$ Solid Electrolyte , 2010, IEEE Transactions on Electron Devices.

[11]  N. Sakimura,et al.  Polymer solid-electrolyte (PSE) switch embedded in 90nm CMOS with forming-free and 10nsec programming for low power, nonvolatile programmable logic (NPL) , 2010, 2010 International Electron Devices Meeting.

[12]  J. Paramesh,et al.  A non-volatile look-up table design using PCM (phase-change memory) cells , 2011, 2011 Symposium on VLSI Circuits - Digest of Technical Papers.

[13]  K. Makabe,et al.  A New TDDB Degradation Model Based on Cu Ion Drift in Cu Interconnect Dielectrics , 2006, 2006 IEEE International Reliability Physics Symposium Proceedings.

[14]  Masato Motomura,et al.  Programmable cell array using rewritable solid-electrolyte switch integrated in 90nm CMOS , 2011, 2011 IEEE International Solid-State Circuits Conference.

[15]  Yiran Chen,et al.  Processor caches built using multi-level spin-transfer torque RAM cells , 2011, IEEE/ACM International Symposium on Low Power Electronics and Design.

[16]  T. Sullivan,et al.  A Comprehensive Study of Low-k SiCOH TDDB Phenomena and Its Reliability Lifetime Model Development , 2006, 2006 IEEE International Reliability Physics Symposium Proceedings.

[17]  T. Hasegawa,et al.  Nanometer-scale switches using copper sulfide , 2003 .

[18]  H. Hada,et al.  Conducting mechanism of atom switch with polymer solid-electrolyte , 2011, 2011 International Electron Devices Meeting.

[19]  T. Fukai,et al.  Porous Low-$k$ Impacts on Performance of Advanced LSI Devices with GHz Operations , 2009 .

[20]  T. Hasegawa,et al.  Electronic transport in Ta2O5 resistive switch , 2007 .

[21]  Shoji Sakamoto,et al.  An 8Mb multi-layered cross-point ReRAM macro with 443MB/s write throughput , 2012, 2012 IEEE International Solid-State Circuits Conference.

[22]  M. Breitwisch,et al.  Endurance and scaling trends of novel access-devices for multi-layer crosspoint-memory based on mixed-ionic-electronic-conduction (MIEC) materials , 2011, 2011 Symposium on VLSI Technology - Digest of Technical Papers.

[23]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.