First-Order Resolution Methods for Modal Logics

In this paper we give an overview of results for modal logic which can be shown using techniques and methods from first-order logic and resolution. Because of the breadth of the area and the many applications we focus on the use of first-order resolution methods for modal logics. In addition to traditional propositional modal logics we consider more expressive PDL-like dynamic modal logics closely related to description logics. Without going into too much detail, we survey different ways of translating modal logics into first-order logic, we explore different ways of using first-order resolution theorem provers to solve a range of reasoning problems for modal logics, and we discuss a variety of results which have been obtained in the setting of first-order resolution.

[1]  Luis Fariñas del Cerro,et al.  Modal deduction with applications in epistemic and temporal logics , 1995 .

[2]  William C. Purdy Decidability of Fluted Logic with Identity , 1996, Notre Dame J. Formal Log..

[3]  M. A. McRobbie,et al.  Automated Deduction — Cade-13 , 1996, Lecture Notes in Computer Science.

[4]  Joseph Douglas Horton,et al.  Merge Path Improvements for Minimal Model Hyper Tableaux , 1999, TABLEAUX.

[5]  Erich Grädel,et al.  Decision procedures for guarded logics , 1999 .

[6]  Andreas Nonnengart,et al.  Resolution-Based Calculi for Modal and Temporal Logics , 1996, CADE.

[7]  Ullrich Hustadt,et al.  Resolution-Based Methods for Modal Logics , 2000, Log. J. IGPL.

[8]  Frank Wolter,et al.  Semi-qualitative Reasoning about Distances: A Preliminary Report , 2000, JELIA.

[9]  Harald Ganzinger,et al.  Superposition with Simplification as a Desision Procedure for the Monadic Class with Equality , 1993, Kurt Gödel Colloquium.

[10]  Harald Ganzinger,et al.  Rewrite-Based Equational Theorem Proving with Selection and Simplification , 1994, J. Log. Comput..

[11]  Dov M. Gabbay,et al.  Quantifier Elimination in Second-Order Predicate Logic , 1992, KR.

[12]  Valentin Goranko,et al.  SCAN Is Complete for All Sahlqvist Formulae , 2003, RelMiCS.

[13]  Christoph Weidenbach,et al.  System Description: SpassVersion 3.0 , 2007, CADE.

[14]  Giorgos B. Stamou,et al.  Optimized Query Rewriting for OWL 2 QL , 2011, CADE.

[15]  Boris Motik,et al.  Tractable query answering and rewriting under description logic constraints , 2010, J. Appl. Log..

[16]  Hans Jürgen Semantics-Based Translation Methods for Modal Logics , 1991 .

[17]  Fabio Massacci,et al.  Single Step Tableaux for Modal Logics , 2000, Journal of Automated Reasoning.

[18]  Peter Baumgartner,et al.  The Model Evolution Calculus , 2003, CADE.

[19]  Ullrich Hustadt,et al.  A New Clausal Class Decidable by Hyperresolution , 2002, CADE.

[20]  Ian Green,et al.  System Description: Proof Planning in Higher-Order Logic with Lambda-Clam , 1998, CADE.

[21]  Ullrich Hustadt,et al.  The axiomatic translation principle for modal logic , 2007, TOCL.

[22]  Vincent Danos,et al.  The Structure of Exponentials: Uncovering the Dynamics of Linear Logic Proofs , 1993, Kurt Gödel Colloquium.

[23]  M. de Rijke,et al.  Encoding Two-Valued Nonclassical Logics in Classical Logic , 2001, Handbook of Automated Reasoning.

[24]  Stéphane Demri,et al.  Deciding Regular Grammar Logics with Converse Through First-Order Logic , 2003, J. Log. Lang. Inf..

[25]  Patrice Enjalbert,et al.  Modal Theorem Proving: An Equational Viewpoint , 1989, IJCAI.

[26]  H. Ganzinger,et al.  Equational Reasoning in Saturation-Based Theorem Proving , 1998 .

[27]  Andrei Voronkov,et al.  Automated Deduction—CADE-18 , 2002, Lecture Notes in Computer Science.

[28]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[29]  U. Hustadt,et al.  A Survey of Decidable First-Order Fragments and Description Logics , 2004 .

[30]  Ullrich Hustadt,et al.  Mechanised Reasoning and Model Generation for Extended Modal Logics , 2003, Theory and Applications of Relational Structures as Knowledge Instruments.

[31]  Renate A. Schmidt,et al.  A new methodology for developing deduction methods , 2009, Annals of Mathematics and Artificial Intelligence.

[32]  Andreas Nonnengart,et al.  First-Order Modal Logic Theorem Proving and Functional Simulation , 1993, IJCAI.

[33]  Clare Dixon,et al.  Clausal temporal resolution , 1999, TOCL.

[34]  Michael Fisher,et al.  Monodic temporal resolution , 2003, TOCL.

[35]  Boris Motik,et al.  Hypertableau Reasoning for Description Logics , 2009, J. Artif. Intell. Res..

[36]  Christoph Weidenbach,et al.  SPASS version 2.0 , 2002 .

[37]  Ullrich Hustadt,et al.  Hyperresolution for guarded formulae , 2003, J. Symb. Comput..

[38]  Renate A. Schmidt,et al.  Improved Second-Order Quantifier Elimination in Modal Logic , 2008, JELIA.

[39]  Dov M. Gabbay,et al.  On Modal Logics Characterized by Models with Relative Accessibility Relations: Part I , 2000, Stud Logica.

[40]  Ullrich Hustadt,et al.  Implementing a fair monodic temporal logic prover , 2010, AI Commun..

[41]  Johan van Benthem,et al.  Modal Languages and Bounded Fragments of Predicate Logic , 1998, J. Philos. Log..

[42]  F. Massacci Single Step Tableaux for Modal Logics Computational Properties, Complexity and Methodology , 2000 .

[43]  J.F.A.K. van Benthem,et al.  Modal Correspondence Theory , 1977 .

[44]  Harald Ganzinger,et al.  New directions in instantiation-based theorem proving , 2003, 18th Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings..

[45]  Patrick Doherty,et al.  Computing Circumscription Revisited: A Reduction Algorithm , 1997, Journal of Automated Reasoning.

[46]  Ullrich Hustadt,et al.  Maslov's Class K Revisited , 1999, CADE.

[47]  Ullrich Hustadt,et al.  On the Relation of Resolution and Tableaux Proof Systems for Description Logics , 1999, IJCAI.

[48]  Andrzej Szałas,et al.  ELIMINATION OF PREDICATE QUANTIFIERS , 1999 .

[49]  Uwe Reyle,et al.  Logic, Language and Reasoning , 1999 .

[50]  Roy Dyckhoff Automated Reasoning with Analytic Tableaux and Related Methods , 2000, Lecture Notes in Computer Science.

[51]  Renate A. Schmidt,et al.  Simulation and Synthesis of Deduction Calculi , 2010, M4M.

[52]  Ian Horrocks,et al.  Computational modal logic , 2007, Handbook of Modal Logic.

[53]  Lan Zhang,et al.  Clausal reasoning for branching-time logics , 2010 .

[54]  Dov M. Gabbay,et al.  Second-Order Quantifier Elimination - Foundations, Computational Aspects and Applications , 2008, Studies in logic : Mathematical logic and foundations.

[55]  Rajeev Goré,et al.  Tableau Methods for Modal and Temporal Logics , 1999 .

[56]  Renate A. Schmidt,et al.  Functional Translation and Second-Order Frame Properties of Modal Logics , 1997, J. Log. Comput..

[57]  Luis Fariñas del Cerro,et al.  Modal Tableaux with Propagation Rules and Structural Rules , 1997, Fundam. Informaticae.

[58]  Gernot Salzer,et al.  Automated Deduction in Classical and Non-Classical Logics , 2002, Lecture Notes in Computer Science.

[59]  Renate A. Schmidt Decidability by Resolution for Propositional Modal Logics , 2004, Journal of Automated Reasoning.

[60]  Jaime G. Carbonell,et al.  Automated Deduction — CADE-16 , 2002, Lecture Notes in Computer Science.

[61]  Marc Roubens,et al.  Theory and Applications of Relational Structures as Knowledge Instruments II, International Workshops of COST Action 274, TARSKI, 2002-2005, Selected Revised Papers , 2006, Theory and Applications of Relational Structures as Knowledge Instruments.

[62]  Gernot Stenz DCTP 1.2 - System Abstract , 2002, TABLEAUX.

[63]  Boris Motik,et al.  A Resolution-Based Decision Procedure for SHOIQ , 2006, IJCAR.

[64]  Renate A. Schmidt,et al.  Using Tableau to Decide Expressive Description Logics with Role Negation , 2007, ISWC/ASWC.

[65]  W. W. Bledsoe,et al.  Splitting and Reduction Heuristics in Automatic Theorem Proving , 1971, Artif. Intell..

[66]  Georg Struth,et al.  Relational and Kleene-Algebraic Methods in Computer Science , 2003, Lecture Notes in Computer Science.

[67]  Harald Ganzinger,et al.  A superposition decision procedure for the guarded fragment with equality , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[68]  Dov M. Gabbay,et al.  Handbook of Philosophical Logic , 2002 .

[69]  M. de Rijke Extending modal logic , 1993 .

[70]  Albert Rubio,et al.  Paramodulation-Based Theorem Proving , 2001, Handbook of Automated Reasoning.

[71]  Peter Baumgartner,et al.  FDPLL - A First Order Davis-Putnam-Longeman-Loveland Procedure , 2000, CADE.

[72]  Lloyd Humberstone Inaccessible worlds , 1983, Notre Dame J. Formal Log..

[73]  M. Kracht Tools and Techniques in Modal Logic , 1999 .

[74]  Ilkka Niemelä,et al.  A Tableau Calculus for Minimal Model Reasoning , 1996, TABLEAUX.

[75]  Harald Ganzinger,et al.  Resolution Theorem Proving , 2001, Handbook of Automated Reasoning.

[76]  Ullrich Hustadt,et al.  A Principle for Incorporating Axioms into the First-Order Translation of Modal Formulae , 2003, CADE.

[77]  Larry Wos,et al.  What Is Automated Reasoning? , 1987, J. Autom. Reason..

[78]  Renate A. Schmidt,et al.  Peirce algebras , 1993, Formal Aspects of Computing.

[79]  Dov M. Gabbay,et al.  On Modal Logics Characterized by Models with Relative Accessibility Relations: Part II , 2000, Stud Logica.

[80]  Frank Wolter,et al.  Monodic fragments of first-order temporal logics: 2000-2001 A.D , 2001, LPAR.

[81]  Ullrich Hustadt,et al.  A Resolution Decision Procedure for Fluted Logic , 2000, CADE.

[82]  François Bry,et al.  Positive Unit Hyperresolution Tableaux and Their Application to Minimal Model Generation , 2004, Journal of Automated Reasoning.

[83]  Andrei Voronkov,et al.  Splitting Without Backtracking , 2001, IJCAI.

[84]  Miyuki Koshimura,et al.  Efficient Minimal Model Generation Using Branching Lemmas , 2000, CADE.

[85]  Frank Pfenning,et al.  Automated Deduction - CADE-21, 21st International Conference on Automated Deduction, Bremen, Germany, July 17-20, 2007, Proceedings , 2007, CADE.

[86]  Ullrich Hustadt,et al.  Using Resolution for Testing Modal Satisfiability and Building Models , 2002, Journal of Automated Reasoning.

[87]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[88]  Christian G. Fermüller,et al.  Resolution Decision Procedures , 2001, Handbook of Automated Reasoning.

[89]  Ullrich Hustadt,et al.  MSPASS: Modal Reasoning by Translation and First-Order Resolution , 2000, TABLEAUX.

[90]  William C. Purdy,et al.  Quine's ‘limits of decision’ , 1999, Journal of Symbolic Logic.

[91]  Nikolaj Bjørner,et al.  Automated Deduction - CADE-23 - 23rd International Conference on Automated Deduction, Wroclaw, Poland, July 31 - August 5, 2011. Proceedings , 2011, CADE.

[92]  Ullrich Hustadt,et al.  An empirical analysis of modal theorem provers , 1999, J. Appl. Non Class. Logics.

[93]  Ullrich Hustadt Resolution based decision procedures for subclasses of first-order logic , 1999 .

[94]  Tinko Tinchev,et al.  Modal Environment for Boolean Speculations , 1987 .

[95]  Dov M. Gabbay,et al.  Logic, Language, and Reasoning Essays in Honour of Dov Gabbay , 1999 .

[96]  Lloyd Humberstone The modal logic of 'all and only' , 1987, Notre Dame J. Formal Log..

[97]  Harald Ganzinger,et al.  Refutational theorem proving for hierarchic first-order theories , 1994, Applicable Algebra in Engineering, Communication and Computing.

[98]  Clare Dixon,et al.  CTL-RP: A computation tree logic resolution prover , 2010, AI Commun..

[99]  Johan van Benthem,et al.  Halldén-completeness by gluing of Kripke frames , 1983, Notre Dame J. Formal Log..

[100]  Ullrich Hustadt,et al.  Two Proof Systems for Peirce Algebras , 2003, RelMiCS.

[101]  Boris Motik,et al.  A Resolution-Based Decision Procedure for $\boldsymbol{\mathcal{SHOIQ}}$ , 2008, Journal of Automated Reasoning.

[102]  Hans Jürgen Ohlbach,et al.  Translation Methods for Non-Classical Logics: An Overview , 1993, Log. J. IGPL.

[103]  Henrik Sahlqvist Completeness and Correspondence in the First and Second Order Semantics for Modal Logic , 1975 .

[104]  András Simon,et al.  Undecidable Varieties of Semilattice - ordered Semigroups, of Boolean Algebras with Operators, and logics extending Lambek Calculus , 1993, Log. J. IGPL.

[105]  Erich Grädel,et al.  On the Restraining Power of Guards , 1999, Journal of Symbolic Logic.

[106]  R. Schmidt Optimised modal translation and resolution , 1997 .

[107]  Renate A. Schmidt Automated Deduction - CADE-22, 22nd International Conference on Automated Deduction, Montreal, Canada, August 2-7, 2009. Proceedings , 2009, CADE.

[108]  Alessio Guglielmi,et al.  A system of interaction and structure , 1999, TOCL.

[109]  Hans de Nivelle Splitting Through New Proposition Symbols , 2001, LPAR.

[110]  Ullrich Hustadt,et al.  Computational Space Efficiency and Minimal Model Generation for Guarded Formulae , 2001, LPAR.

[111]  Willard Van Orman Quine,et al.  Algebraic Logic and Predicate Functors , 1971 .

[112]  Andreas Nonnengart A resolution-based calculus for temporal logics , 1995 .

[113]  Clare Dixon,et al.  Mechanising first-order temporal resolution , 2005, Inf. Comput..

[114]  Stephan Schulz,et al.  E - a brainiac theorem prover , 2002, AI Commun..

[115]  Yevgeny Kazakov,et al.  Consequence-Driven Reasoning for Horn SHIQ Ontologies , 2009, IJCAI.

[116]  Harald Ganzinger,et al.  Chaining techniques for automated theorem proving in many-valued logics , 2000, Proceedings 30th IEEE International Symposium on Multiple-Valued Logic (ISMVL 2000).

[117]  U. Hustadt,et al.  TRP + + : A temporal resolution prover ⋆ , 2002 .

[118]  Andreas Herzig Raisonnement automatique en logique modale et algorithmes d'unification , 1989 .

[119]  Maarten de Rijke,et al.  Tree-based Heuristics in Modal Theorem Proving , 2000, ECAI.

[120]  Jacques D. Fleuriot,et al.  IsaPlanner: A Prototype Proof Planner in Isabelle , 2003, CADE.

[121]  Clare Dixon,et al.  A Refined Resolution Calculus for CTL , 2009, CADE.

[122]  Andrzej Sza Las On Correspondence Between Modal and Classical Logic: Automated Approach , 1992 .

[123]  George Gargov,et al.  A Note on Boolean Modal Logic , 1990 .

[124]  Harald Ganzinger,et al.  A Resolution-Based Decision Procedure for Extensions of K4 , 1998, Advances in Modal Logic.

[125]  David A. McAllester,et al.  Automated Deduction - CADE-17 , 2000, Lecture Notes in Computer Science.

[126]  Johan van Benthem,et al.  Back and Forth Between Modal Logic and Classical Logic , 1995, Log. J. IGPL.

[127]  Ullrich Hustadt,et al.  Issues of Decidability for Description Logics in the Framework of Resolution , 1998, FTP.

[128]  Ullrich Hustadt,et al.  Fair Derivations in Monodic Temporal Reasoning , 2009, CADE.

[129]  Hans Jürgen Ohlbach Combining Hilbert Style and Semantic Reasoning in a Resolution Framework , 1998, CADE.

[130]  Frank Wolter,et al.  Handbook of Modal Logic , 2007, Studies in logic and practical reasoning.

[131]  Boris Motik,et al.  Deciding expressive description logics in the framework of resolution , 2008, Inf. Comput..

[132]  Margus Veanes,et al.  The two-variable guarded fragment with transitive relations , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).