A strategy for dissecting the architectures of native macromolecular assemblies

It remains particularly problematic to define the structures of native macromolecular assemblies, which are often of low abundance. Here we present a strategy for isolating complexes at endogenous levels from GFP-tagged transgenic cell lines. Using cross-linking mass spectrometry, we extracted distance restraints that allowed us to model the complexes' molecular architectures.

[1]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[2]  G. Phillips,et al.  The molecular structure of green fluorescent protein , 1996, Nature Biotechnology.

[3]  R. Tsien,et al.  green fluorescent protein , 2020, Catalysis from A to Z.

[4]  김삼묘,et al.  “Bioinformatics” 특집을 내면서 , 2000 .

[5]  E. O’Shea,et al.  Global analysis of protein localization in budding yeast , 2003, Nature.

[6]  Robertson Craig,et al.  TANDEM: matching proteins with tandem mass spectra. , 2004, Bioinformatics.

[7]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[8]  Michael Nilges,et al.  Materials and Methods Som Text Figs. S1 to S6 References Movies S1 to S5 Inferential Structure Determination , 2022 .

[9]  J. Peters The anaphase promoting complex/cyclosome: a machine designed to destroy , 2006, Nature Reviews Molecular Cell Biology.

[10]  Sean R. Collins,et al.  Global landscape of protein complexes in the yeast Saccharomyces cerevisiae , 2006, Nature.

[11]  David Tollervey,et al.  RNA-quality control by the exosome , 2006, Nature Reviews Molecular Cell Biology.

[12]  S. Mohammed,et al.  Probing Genuine Strong Interactions and Post-translational Modifications in the Heterogeneous Yeast Exosome Protein Complex*S , 2006, Molecular & Cellular Proteomics.

[13]  B. Chait,et al.  Determining the architectures of macromolecular assemblies , 2007, Nature.

[14]  Richard S. Rogers,et al.  Comprehensive analysis of diverse ribonucleoprotein complexes , 2007, Nature Methods.

[15]  M. Mann,et al.  Higher-energy C-trap dissociation for peptide modification analysis , 2007, Nature Methods.

[16]  B. Chait,et al.  The molecular architecture of the nuclear pore complex , 2007, Nature.

[17]  N. Mizushima,et al.  Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. , 2008, Molecular biology of the cell.

[18]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[19]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[20]  Qing Jun Wang,et al.  Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1–phosphatidylinositol-3-kinase complex , 2009, Nature Cell Biology.

[21]  F. Bonneau,et al.  The Yeast Exosome Functions as a Macromolecular Cage to Channel RNA Substrates for Degradation , 2009, Cell.

[22]  Corella S. Casas-Delucchi,et al.  Modulation of protein properties in living cells using nanobodies , 2010, Nature Structural &Molecular Biology.

[23]  K. Shokat,et al.  Shaping Development of Autophagy Inhibitors with the Structure of the Lipid Kinase Vps34 , 2010, Science.

[24]  M. Selbach,et al.  Global quantification of mammalian gene expression control , 2011, Nature.

[25]  Edward P. Morris,et al.  Structural basis for the subunit assembly of the anaphase-promoting complex , 2011, Nature.

[26]  B. Chait,et al.  Conjugation of magnetic beads for immunopurification of protein complexes. , 2011, Cold Spring Harbor protocols.

[27]  M. Dong,et al.  Identification of cross-linked peptides from complex samples , 2012, Nature Methods.

[28]  Josef D. Franke,et al.  Structure–function mapping of a heptameric module in the nuclear pore complex , 2012, The Journal of cell biology.

[29]  Andrei L. Turinsky,et al.  A Census of Human Soluble Protein Complexes , 2012, Cell.

[30]  Yanxiang Zhao,et al.  Imperfect interface of Beclin1 coiled-coil domain regulates homodimer and heterodimer formation with Atg14L and UVRAG , 2012, Nature Communications.

[31]  Ben M. Webb,et al.  Putting the Pieces Together: Integrative Modeling Platform Software for Structure Determination of Macromolecular Assemblies , 2012, PLoS biology.

[32]  R. Aebersold,et al.  Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach , 2012, Proceedings of the National Academy of Sciences.

[33]  R. Aebersold,et al.  Expanding the Chemical Cross-Linking Toolbox by the Use of Multiple Proteases and Enrichment by Size Exclusion Chromatography , 2012, Molecular & Cellular Proteomics.

[34]  Serge Muyldermans,et al.  Nanobodies: natural single-domain antibodies. , 2013, Annual review of biochemistry.

[35]  Elena Conti,et al.  Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex , 2013, Nature.

[36]  Ruedi Aebersold,et al.  Mass spectrometry supported determination of protein complex structure. , 2013, Current opinion in structural biology.

[37]  Andrej Sali,et al.  Integrative Structural Biology , 2013, Science.

[38]  P. Mitchell,et al.  Assembly of the Yeast Exoribonuclease Rrp6 with Its Associated Cofactor Rrp47 Occurs in the Nucleus and Is Critical for the Controlled Expression of Rrp47* , 2013, The Journal of Biological Chemistry.

[39]  R. Aebersold,et al.  Molecular Architecture of the 40S⋅eIF1⋅eIF3 Translation Initiation Complex , 2014, Cell.

[40]  C. Hetz,et al.  Targeting autophagy in neurodegenerative diseases. , 2014, Trends in pharmacological sciences.

[41]  J. Ranish,et al.  Architecture of the S. cerevisiae RNA polymerase I Core Factor complex , 2014, Nature Structural &Molecular Biology.

[42]  Seung Joong Kim,et al.  Structural Characterization by Cross-linking Reveals the Detailed Architecture of a Coatomer-related Heptameric Module from the Nuclear Pore Complex* , 2014, Molecular & Cellular Proteomics.

[43]  David Fenyö,et al.  A robust pipeline for rapid production of versatile nanobody repertoires , 2014, Nature Methods.

[44]  Carol V. Robinson,et al.  eIF2B is a decameric guanine nucleotide exchange factor with a γ2ε2 tetrameric core , 2014, Nature Communications.

[45]  Patricia Grob,et al.  Architecture and dynamics of the autophagic phosphatidylinositol 3-kinase complex , 2014, eLife.

[46]  C. Lima,et al.  Structure of an Rrp6-RNA exosome complex bound to polyA RNA , 2014, Nature.

[47]  Jun-Jie Liu,et al.  Visualization of Distinct Substrate Recruitment Pathways in the Yeast Exosome by Electron Microscopy , 2013, Nature Structural &Molecular Biology.

[48]  A. Krutchinsky,et al.  See & Catch method for studying protein complexes in yeast cells: a technique unifying fluorescence microscopy and mass spectrometry. , 2014, Methods in molecular biology.

[49]  Seung Joong Kim,et al.  Molecular Architecture and Function of the SEA Complex, a Modulator of the TORC1 Pathway* , 2014, Molecular & Cellular Proteomics.

[50]  D. Barford,et al.  Molecular architecture and mechanism of the anaphase-promoting complex , 2014, Nature.

[51]  Deanna H. Morris,et al.  Nrbf2 Protein Suppresses Autophagy by Modulating Atg14L Protein-containing Beclin 1-Vps34 Complex Architecture and Reducing Intracellular Phosphatidylinositol-3 Phosphate Levels* , 2014, The Journal of Biological Chemistry.

[52]  B. Chait,et al.  Reconstitution of active human core Mediator complex reveals a pivotal role of the MED14 subunit , 2014, Nature Structural &Molecular Biology.

[53]  M. Mann,et al.  Minimal, encapsulated proteomic-sample processing applied to copy-number estimation in eukaryotic cells , 2014, Nature Methods.

[54]  B. Chait,et al.  Rapid, Optimized Interactomic Screening , 2015, Nature Methods.

[55]  Claire Basquin,et al.  RNA degradation paths in a 12-subunit nuclear exosome complex , 2015, Nature.

[56]  Michael J E Sternberg,et al.  The Phyre2 web portal for protein modeling, prediction and analysis , 2015, Nature Protocols.