Index of transversally elliptic operators

In 1996, Berline and Vergne gave a cohomological formula for the index of a transversally elliptic operator. In this paper we propose a new point of view where the cohomological formulae make use of equivariant Chern characters with generalized coefficients and with compact suppport. This kind of Chern characters was studied by the authors in a previous paper (see arXiv:0801.2822).

[1]  M. Vergne,et al.  Equivariant Chern characters with generalized coefficients , 2008, 0801.2822.

[2]  Sean Fitzpatrick An equivariant index formula for elliptic actions on contact manifolds , 2007, 0712.2431.

[3]  M. Vergne,et al.  Equivariant relative Thom forms and Chern characters , 2007, 0711.3898.

[4]  M. Vergne Applications of Equivariant Cohomology , 2006, math/0607389.

[5]  P. Paradan Spinc-quantization and the K-multiplicities of the discrete series , 2001, math/0103222.

[6]  P. Paradan Localization of the Riemann–Roch Character , 1999, math/9911024.

[7]  M. Atiyah THE INDEX OF ELLIPTIC OPERATORS , 1997 .

[8]  M. Vergne,et al.  The Chern character of a transversally elliptic symbol and the equivariant index , 1996 .

[9]  M. Vergne,et al.  L’indice équivariant des opérateurs transversalement elliptiques , 1996 .

[10]  M. Vergne,et al.  Heat Kernels and Dirac Operators , 1992 .

[11]  J. Bismut Localization formulas, superconnections, and the index theorem for families , 1986 .

[12]  W. Rossmann Kirillov's character formula for reductive Lie groups , 1978 .

[13]  M. Atiyah Elliptic operators and compact groups , 1974 .

[14]  M. Atiyah,et al.  The Index of Elliptic Operators: II , 1968 .

[15]  M. Atiyah,et al.  The Index of elliptic operators. 1 , 1968 .

[16]  M. Atiyah,et al.  The Index of elliptic operators. 3. , 1968 .

[17]  D. Quillen,et al.  Superconnections, thom classes, and equivariant differential forms , 1986 .

[18]  D. Quillen Superconnections and the Chern character , 1985 .

[19]  M. Atiyah,et al.  The Index of Elliptic Operators: IV , 1971 .