Reversibility vs local creation/destruction

Consider a network that evolves reversibly, according to nearest neighbours interactions. Can its dynamics create/destroy nodes? On the one hand, since the nodes are the principal carriers of information , it seems that they cannot be destroyed without jeopardising bijectivity. On the other hand, there are plenty of global functions from graphs to graphs that are non-vertex-preserving and bijective. The question has been answered negatively—in three different ways. Yet, in this paper we do obtain reversible local node creation/destruction—in three relaxed settings, whose equivalence we prove for robustness. We motivate our work both by theoretical computer science considerations (reversible computing, cellular automata extensions) and theoretical physics concerns (basic formalisms for discrete quantum gravity). 1998 ACM Subject Classification

[1]  J. Kari Representation of reversible cellular automata with block permutations , 1996, Mathematical systems theory.

[2]  Simone Severini,et al.  Quantum bose-hubbard model with an evolving graph as a toy model for emergent spacetime , 2009, 0911.5075.

[3]  Laurent Bartholdi Gardens of Eden and amenability on cellular automata , 2010 .

[4]  Jérémie Chalopin,et al.  Deterministic Symmetric Rendezvous in Arbitrary Graphs: Overcoming Anonymity, Failures and Uncertainty , 2013 .

[5]  Annegret Habel,et al.  Amalgamation of Graph Transformations: A Synchronization Mechanism , 1987, J. Comput. Syst. Sci..

[6]  Pablo Arrighi,et al.  Quantum Causal Graph Dynamics , 2016, ArXiv.

[7]  Vincent Nesme,et al.  Generalized Cayley Graphs and Cellular Automata over them , 2012, ArXiv.

[8]  Bruno Martin,et al.  Intrinsic Universality of Causal Graph Dynamics , 2013, MCU.

[9]  R. Sorkin Time-evolution problem in regge calculus , 1975 .

[10]  R. Werner,et al.  Reversible quantum cellular automata , 2004, quant-ph/0405174.

[11]  Hartmut Ehrig,et al.  Parallel and Distributed Derivations in the Single-Pushout Approach , 1993, Theor. Comput. Sci..

[12]  Simon Perdrix,et al.  Reversible Causal Graph Dynamics , 2015, RC.

[13]  Misha Gromov,et al.  Endomorphisms of symbolic algebraic varieties , 1999 .

[14]  G. A. Hedlund Endomorphisms and automorphisms of the shift dynamical system , 1969, Mathematical systems theory.

[15]  Jérôme Olivier Durand-Lose,et al.  Representing Reversible Cellular Automata with Reversible Block Cellular Automata , 2001, DM-CCG.

[16]  Gilles Dowek,et al.  Causal Graph Dynamics , 2012, ICALP.

[17]  Simon Perdrix,et al.  Block Representation of Reversible Causal Graph Dynamics , 2015, FCT.

[18]  Tullio Ceccherini-Silberstein,et al.  The Garden of Eden theorem for cellular automata and for symbolic dynamical systems , 2004 .

[19]  Vincent Nesme,et al.  Unitarity plus causality implies localizability , 2007, J. Comput. Syst. Sci..

[20]  Luidnel Maignan,et al.  Global Graph Transformations , 2015, GCM@ICGT.

[21]  Pablo Arrighi,et al.  Reversibility vs Local Creation/Destruction , 2019, RC.

[22]  K. Tomita,et al.  Graph automata: natural expression of self-reproduction , 2002 .

[23]  Gabriele Taentzer,et al.  Parallel High-Level Replacement Systems , 1997, Theor. Comput. Sci..

[24]  Cosimo Laneve,et al.  Formal molecular biology , 2004, Theor. Comput. Sci..

[25]  David A. Meyer,et al.  Modeling dynamical geometry with lattice gas automata , 1998 .

[26]  D. Meyer,et al.  Lattice gas simulations of dynamical geometry in two dimensions. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Klaus Sutner Classifying circular cellular automata , 1991 .

[28]  Jarkko Kari,et al.  On the Circuit Depth of Structurally Reversible Cellular Automata , 1999, Fundam. Informaticae.

[29]  Eric Rémila,et al.  Hyperbolic Recognition by Graph Automata , 2002, ICALP.

[30]  Vincent Nesme,et al.  Cellular automata over generalized Cayley graphs , 2017, Mathematical Structures in Computer Science.